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Foreword

This book containing conjectures is meant to occupy my husband,
Guido Mislin, during the long years of his retirement. I view this
project with appreciation, since I was wondering how that mission was
to be accomplished. In the thirty-five years of our acquaintance, Guido
has usually kept busy with his several jobs, our children and occasional,
but highly successful projects that he has undertaken around the house.
The prospect of a Guido unleashed from the ETH; unfettered by pro-
fessional duties of any sort, wandering around the world as a free agent
with, in fact, nothing to do, is a prospect that would frighten nations
if they knew it was imminent. I find it a little scary myself, so I am in
a position to appreciate the existence of this project from the bottom
of my heart.

Of course, the book is much more than the sum of its parts. It
wouldn’t take Guido long to read a single page in a book, but a page
containing a conjecture, particularly a good one, might take him years.
This would, of course, be a very good thing.

Though not any sort of mathematician, I have observed the field long
enough to know that mathematicians do not share our mundane reality.
They breathe a more rarefied air. For example, in the regular world
one might say, “There is a dead chicken on that table.” or “There is
no dead chicken on that table.” In this example, one would have little
trouble proving the point either way because a close examination of the
table would quickly reveal whether it held a dead chicken or not. Now,
in the world of the mathematician, these two alternatives simply did
not offer enough scope, so in the last century, a third alternative was
provided. Currently we have the case of the table with a dead chicken;
the table with no dead chicken and the table where it will never be
proven whether there is a dead chicken on it or not. In that case, one
would declare the problem undecidable, which means that it probably
cannot be proven one way or the other so don’t bother. Impressive,
isn’t it? When one hits a wall in mathematics, the wall simply gets
redefined or reinvented. I only wish it were that simple for the rest of
us.

Guido is fortunate to have the promise this book offers of interest-
ing conjectures in his future and he is also very fortunate to have the
interest and the efforts of his friends and colleagues who contributed,
particularly Indira Chatterji whose idea and hard work this book rep-
resents. As for me, Guido is my own wondrous undecidable conjecture
and that has been the greatest good fortune of my life.

Gwynyth Mislin
June 2006
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1. Alejandro Adem
A Conjecture About Group Actions

Dear Guido,

Here is my favorite conjecture, which is easy to state but can be
quite dangerous. If anyone can solve it in an elegant way it will be you!

Best wishes and thanks for everything,

Alejandro Adem.

Conjecture 1.1. If G is a finite group of rank equal to r, then it acts
freely on a finite complex with the homotopy type of a product of k
spheres if and only if r ≤ k.



10 GUIDO’S BOOK OF CONJECTURES

2. Dominique Arlettaz
A vanishing conjecture for the homology of congruence

subgroups

Dear Guido,

It was a pleasure to be your student, it is just great to be your friend.
I hope you’ll have a very nice and active retirement.

With my best wishes,
Dominique

For any prime number p, let Γn,p denote the congruence subgroup
of SLn(Z) of level p, i.e., the kernel of the surjective homomorphism
fp : SLn(Z) → SLn(Fp) induced by the reduction mod p, and let us
write Γp = lim

−→
n

Γn,p, where the limit is defined by upper left inclusions.

If p is odd, then the group Γp is torsion-free. Therefore, it is of par-
ticular interest to detect torsion classes in the integral (co)homology of
Γp. It turns out that H∗(Γp; Z) contains 2-torsion elements in arbitrar-
ily large dimensions (see Corollary 1.10 of [Ar]). Groups like this are
called groups with “very strange torsion” by S. Weintraub in 1986.

However, vanishing results for the (co)homology of Γp are also ex-
tremely useful. Let us propose the following

Conjecture 2.1. For an odd integer n and an odd prime p, the ho-
mology group Hn(Γp; Z) contains no q-torsion if q is a sufficiently large
prime (in comparison with n), q 6= p.

As far as I know, this problem is not solved, but one should no-
tice its relationship with the study of the Dwyer-Friedlander map ϕZ :
(Kn(Z))q → K ét

n (Z[1
q
]) relating the q-torsion of algebraic K-theory to

étale K-theory. This map is known to be surjective and it is conjec-
turally an isomorphism (this is a version of the Quillen-Lichtenbaum
conjecture, see [DF], Theorem 8.7 and Remark 8.8).

For q 6= p, the Dwyer-Friedlander map and the reduction mod p
induce the commutative diagram

(Kn(Z))q
ϕZ //

(fp)∗
��

K ét
n (Z[1

q
])

��
(Kn(Fp))q

ϕFp // K ét
n (Fp)

The map ϕFp is an isomorphism, since the K-theory of finite fields
is completely known. If we define An = kerϕZ and Bn = ker(fp)∗, this
implies that An is contained in Bn.
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On the other hand, one can show by using Postnikov decompositions
that Bn is a direct summand of (Hn(Γp; Z))q for large enough primes
q 6= p (see [Ar], Introduction and Theorem 2.1).

Consequently, the proof of the above conjecture for n odd and q
a large enough prime would imply the vanishing of Bn and there-
fore the vanishing of An which provides the assertion that the Dwyer-
Friedlander map ϕZ is an isomorphism.

References

[Ar] D. Arlettaz: Torsion classes in the cohomology of congruence sub-
groups. Math. Proc. Cambridge Philos. Soc. 105 (1989), 214-248.

[DF] W.C. Dwyer and E.M. Friedlander: Algebraic and étale K-theory.
Trans. Amer. Math. Soc. 292 (1985), 247-280.
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3. Goulnara N. Arzhantseva
The uniform Kazhdan property for SLn(Z), n ≥ 3.

Dear Guido,
You were the first mathematician I have met in Zurich. I felt very
honored that I was introduced to the ETHZ mathematical life by you.
It is my great pleasure to contribute to this volume. All my best wishes
for the retirement !

Let Γ be a discrete group, and let S be a finite subset of Γ. For a
unitary representation π of Γ in a separable Hilbert space H we define
the number

K(π,Γ, S) = inf
0 6=u∈H

max
s∈S

‖π(s)u− u‖
‖u‖

.

Then the Kazhdan constant of Γ with respect to S is defined as

K(Γ, S) = inf
π
K(π,Γ, S),

where the infimum is taken over unitary representations π having no
invariant vectors. We also define the uniform Kazhdan constant of Γ
as

K(Γ) = inf
S
K(Γ, S),

where the infimum is taken over all finite generating sets S of Γ.
A group Γ is said to have Kazhdan property (T) (or to be a Kazhdan

group) if there exists a finite subset S of Γ with K(Γ, S) > 0. A group
Γ is uniform Kazhdan if K(Γ) > 0.

Shortly after its introduction by David Kazhdan in the mid 60’s,
property (T) was used by Gregory Margulis to give a first explicit
construction of infinite families of expander graphs of bounded degree.
In particular, a major problem of practical application in the design of
efficient communication networks was solved.

A classical example of a Kazhdan group is the group SLn(Z) for
n ≥ 3 (for more details and a general context of locally compact groups
see a recent book 1). Surprisingly, the following question is still open.

Question 3.1. Is the group SLn(Z), for n ≥ 3, uniform Kazhdan ?

Infinite finitely generated uniform Kazhdan groups were discovered
very recently 2,3. However, these groups are neither finitely presented

1B. Bekka, P. de la Harpe, A. Valette, Kazhdan’s property (T),
http://www.unige.ch/math/biblio/preprint/2006/KazhdansPropertyT.pdf.

2D. Osin, D. Sonkin, Uniform Kazhdan groups, arxiv: math.GR/0606012.
3G. Arzhantseva, T. Delzant, A random group with uniform Kazhdan property,

preliminary version.
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nor residually finite. The latter construction provides an infinite uni-
form Kazhdan group that weakly 4 contains an infinite family of ex-
panders in its Cayley graph.

An affirmative answer to the above question would give, in partic-
ular, the first example of a residually finite (and, in addition, finitely
presented) infinite uniform Kazhdan group. It is crucial for applica-
tions: infinite families of expanders could be constructed independently
of the choice of the group generating set.

A negative answer would be interesting as well. In that case, this
classical group would belong to the class of non-uniform Kazhdan
groups. First examples of such groups were obtained using Lie groups 5.
Then, all word hyperbolic groups were also shown to have zero uniform
Kazhdan constant 6.

Goulnara N. Arzhantseva
Département de Mathématiques
Université de Genève
2-4, rue du Lièvre
CH-1211 Geneva 4
SWITZERLAND
Email: goulnara.arjantseva@math.unige.ch

4M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003),
no. 1, 73–146.

5T. Gelander and A.Zuk, Dependence of Kazhdan constants on generating sub-
sets, Israel J. Math. 129 (2002), 93–98.

6D. Osin, Kazhdan constants of hyperbolic groups, Funktsional. Anal. i
Prilozhen. 36 (2002), no. 4, 46–54; translation in Funct. Anal. Appl. 36 (2002),
no. 4, 290–297.
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4. Christian Ausoni and John Rognes
The Chromatic Red-Shift in algebraic K-theory

Dear Guido,

The algebraic K-theory of the sphere spectrum S is of interest in geo-
metric topology by Waldhausen’s Stable Parametrised h-Cobordism
Theorem (2006), and we would like to understand it like we under-
stand KZ, via Galois descent. In a first approximation, the algebraic
K-theory of the Bousfield localization LK(n)S of S with respect to the
n-th Morava K-theory K(n) might be more accessible. John has devel-
oped a theory of Galois extensions for S-algebras, and in this framework
he has stated conjectures extending the ordinary Lichtenbaum-Quillen
Conjectures. Their precise formulation is distilled from the clues pro-
vided by our computations of the algebraic K-theory of topological
K-theory and related spectra, and it is to be expected that they will
keep maturing in a cask of scepticism for a few years.

We first recall the relevant definitions. Let G be a finite group, and
if G acts on a spectrum X we denote by XhG the homotopy fixed-point
spectrum.

Definition 4.1. A map A→ B of commutative S-algebras is a K(n)-
localG-Galois extension if G acts on B through commutative A-algebra
maps and the canonical maps A → BhG and B ∧A B →

∏
GB are

K(n)-equivalences.

Let V be a finite CW-spectrum of chromatic type n + 1. It admits
an essentially unique vn+1-self-map, and let T = v−1

n+1V be its mapping
telescope. For example, if n = 0 we take V = V (0) = S/p the Moore
spectrum, and for n = 1 and p ≥ 3 we take V = V (1) = V (0)/v1.

Conjecture 4.2. Let A → B be a K(n)-local G-Galois extension.
Then there is a homotopy equivalence

T ∧KA→ T ∧ (KB)hG.

If n = 0, then A → B is a G-Galois extension of commutative Q-
algebras, say number fields, and Conjecture 4.2 is the Galois Descent
Conjecture of Lichtenbaum-Quillen (1973). In the case n = 1, Conjec-
ture 4.2 holds for the K(1)-local F×p -Galois extension Lp → KUp, where
KUp is the p-complete periodic complex K-theory spectrum, and Lp is
the Adams summand.

Conjecture 4.3. Let B be a suitably finite K(n)-local commutative
S-algebra (for example LK(n)S → B could be a G-Galois extension).
Then the map

V ∧KB → T ∧KB
induces an isomorphism on homotopy groups in sufficiently high de-
grees.
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If n = 0 and B = HF is the Eilenberg-Mac Lane spectrum of
a number field F , then there is a homotopy equivalence T ∧ KF '
K ét(F ; Z/p) by Thomason’s Theorem (1985), and the map

V (0) ∧KF = K(F ; Z/p)→ K ét(F ; Z/p)
induces an isomorphism on homotopy groups in sufficiently high de-
grees. For n = 1 and p ≥ 5, and for B = Lp, KUp or their connective
versions `p and kup, it is known that V (1)∗KB is a finitely generated
free Fp[v2]-module in high degrees, hence Conjecture 4.3 holds for these
S-algebras. This is evidence for the “Red-Shift Conjecture”, which, in
a less precise formulation than Conjecture 4.3, asserts that algebraic
K-theory increases chromatic complexity by one.

In the case of a ring of integers OF in a number field F , K(OF ; Z/p)
can be computed from K(F ; Z/p) and the K-theory of the residue
fields by the localization sequence. For computing K(F ; Z/p), one
then relies on Suslin’s Theorem (1983) that K(F̄ ; Z/p) ' V (0) ∧ ku
and uses descent with respect to the absolute Galois group GF .

To generalize this program we have to make sense of the S-algebraic
fraction field of LK(n)S, construct a separable closure Ωn, and evaluate
its K-theory. Let En+1 be Morava’s E-theory associated to the uni-
versal deformation of a height n+ 1 formal group law over Fpn+1 , with
coefficients (En+1)∗ = W (Fpn+1)[[u1, . . . , un]][u±1].

Conjecture 4.4. If Ωn is a separably closed extension of the S-algebraic
fraction field of LK(n)Sp, then there is a homotopy equivalence

LK(n+1)K(Ωn) ' En+1.

For n = 0 this reduces to LK(1)K(Q̄p) ' E1 ' KUp, a weaker
formulation of Suslin’s Theorem.

We did some computations aimed at better understanding what the
fraction field F of KUp might be. We defined KF as the cofibre of the
transfer map for KUp → KUp/p, to sit in a hypothetical localization
sequence K(KUp/p) → KKUp → KF . The result is that V (1)∗KF
is, in high enough degrees, a free Fp[v2]-module on 2(p2 + 3)(p − 1)
generators. In particular F cannot be the HQp-algebra KUp[1/p]. We
rather believe that F is an S-algebraic analogue of a two-dimensio-
nal local field. For example, there appears to be a perfect arithmetic
duality pairing in the Galois cohomology of F , analogous to Tate-
Poitou Duality (1963) for local number fields.

With our best wishes for the future !
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5. Angela Barnhill and Indira Chatterji
Property (T) versus Property FW

Recall (e.g. from de la Harpe and Valette’s book on property (T))
that a group G has property (T) if and only if every continuous affine
action on a real Hilbert space has a global fixed point. Niblo and
Reeves7 showed that for a group satisfying Kazhdan’s property (T),
every cellular action on a finite dimensional CAT(0) cube complex has
a global fixed point. We will look at the following:

Definition 5.1. A group G has property FWn if every cellular action
of G on every n-dimensional CAT(0) cube complex has a global fixed
point. The group G has property FW if G has FWn for all n.

So, according to Niblo and Reeves, if G has Kazhdan’s property (T)
then G has property FW. Note that the abbreviation FW stands for
“fix” and “walls”. Recall the following:

Definition 5.2 (Haglund and Paulin8). A wall space is a set Y to-
gether with a nonempty collection H ⊆ P(Y ) of half-spaces such that
h ∈ H =⇒ hC ∈ H and #{h ∈ H : x ∈ h, y ∈ hc} < ∞ for every
(x, y) ∈ Y × Y . A wall structure endows Y with a pseudo-metric (by
counting how many walls separate two points) and yields a metric on a
quotient of Y . An action of a group G on the wall space Y is an action
of G on Y that preserves the wall structure, i.e. an action such that
g(h) ∈ H for every g ∈ G and h ∈ H.

It turns out that acting on a wall space is very similar to acting
isometrically on a CAT(0) cube complex: It is well-known9 that an
isometric action on a CAT(0) cube complex gives an isometric action on
a wall space, and the converse holds as well, as shown by Nica10 and by
the second author with Niblo11. Moreover, the distance between a point
x and gx is the same in the CAT(0) complex as in the corresponding
wall space.

Recently Cherix, Martin, and Valette12 showed that a finitely gener-
ated group has property (T) if and only if every action on a space with
measured walls has a global fixed point. A natural question, then, is
the following:

7Groups acting on CAT(0) cube complexes, Geom. Topol. 1 (1997), 1-7.
8Simplicité de groupes d’automorphismes d’espaces à courbure négative., Geom.

Topol. Monogr., 1, Geom. Topol. Publ., Coventry, 1998.
9unclear who stated it first in that form, but it is reminiscent in M. Sageev’s

Ends of group pairs and non-positively curved cube complexes, Proc. London Math.
Soc. 71 (1995)

10Cubulating spaces with walls, AGT 4 (2004), 297–309.
11From wall spaces to CAT(0) cube complexes, IJAC 15 (2005), 875-885.
12Spaces with measured walls, Haagerup property and property (T), Ergodic The-

ory Dynam. Systems 24 (2004).
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Question 5.3. Is FW equivalant to (T), or13 does there exist a group
G such that G does not have property (T), but G and all its finite index
subgroups have property FW?

Remark 5.4. Groups with Kazhdan’s property (T) are also known14

to have Serre’s property FA, but many groups with FA do not have (T).
The following generalization of property FA was introduced by Farb:
A group is said to have property FAn if every cellular action of the
group on an n-dimensional CAT(0) (piecewise-Euclidean or piecewise-
hyperbolic) complex has a global fixed point. In particular, FAn implies
FWn. However, SLm(Z[1

p
]) has FAm−2

15 but SLm(Z[1
p
]) acts without a

global fixed point on the Bruhat-Tits building for SLm(Qp), an (m −
1)-dimensional CAT(0) complex, so SLm(Z[1

p
]) does not have FAm−1.

Hence FAn distinguishes between these property (T) groups whereas
every property (T) group has FWn for all n.

Indira’s Appendix. Let C∗(G) be the maximal C*-algebra of G and
CGf ⊆ C∗(G) the C-vector space with basis the elements of finite
order in G. In (one of our many) joint work with you Guido16, an

element x ∈ HH top(C∗(G)) = C∗(G)/[C∗(G), C∗(G)] was called f -
supported if it is in the image of CGf ⊆ C∗(G) under the natural
quotient map C∗(G)→ HH top(C∗(G)). We showed that for a property
(T) group there is always an element in K0(C

∗(G)) whose image in
HH top(C∗(G)) under the Hattori-Stallings trace is not f -supported, so
a natural question is the following:

Question 5.5. Let G be a group such that every finite index subgroup
of G has property FW. Are there elements in K0(C

∗(G)) whose image
in HH top(C∗(G)) under the Hattori-Stallings trace is not f -supported?

13as hinted by Cherix, Martin, and Valette on the second page of their paper
14Y. Watatani. Property (T) of Kazhdan implies property FA of Serre, Math.

Japon. 27 (1982), no. 1, 97–103.
15B. Farb. Group actions and Helly’s theorem, in preparation.
16Traces and reduced group C*-algebras, Contemporary mathematics 399
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6. Laurent Bartholdi
Growth and Amenability

Dear Guido,
I know you’re very fond of growth of discrete groups and amenability
– and it’s a bit upsetting that amenability and subexponential growth
are not equivalent. Well, I propose to make this a true statement!

Let G be a finitely generated, residually-p group. Let {Gn} be its
p-lower central series, defined by G1 = G and Gn+1 = Gp

n[Gn, G] for
example. Write |G : Gn| = pbn .

Conjecture 6.1. A residually-p group is amenable if and only if its
growth series {bn} grows subexponentially, that is, lim(bn)1/n = 1.

A little motivation: consider the augmentation ideal $ in the group
ring FpG. Then the sequence {bn} grows subexponentially if and only
if the sequence dim$n/$n+1 grows subexponentially. This means that
the associated graded

⊕
n≥0$

n/$n+1 is amenable in the sense of [M.
Gromov: Topological invariants of dynamical systems and spaces of
holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999) 323–415;
MR1742309 (2001j:37037)]

Questions related to this were already asked in:
[A. Vershik: Amenability and approximation of infinite groups, Selecta
Math. Soviet. 2 (1982) 311–330; MR0721030 (86g:43006)]
[L. Bartholdi and R. Grigorchuk: Lie methods in growth of groups
and groups of finite width, Computational and Geometric Aspects of
Modern Algebra (Michael Atkinson et al., ed.), London Math. Soc.
Lect. Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 2000,
pp. 1–27; MR1776763 (2001h:20046)].
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7. Oliver Baues
Two problems concerning polycyclic spaces

A finite space (CW-complex) X is called a nilpotent space if the
fundamental group π1(X) acts nilpotently on the homotopy groups of
X. In particular, π1(X) is finitely generated nilpotent itself. Sullivan
proved that the group of homotopy equivalences of a nilpotent space is,
modulo finite kernels, commensurable with an arithmetic group.

Natural examples for nilpotent spaces are aspherical spaces X with
(torsion-free) finitely generated nilpotent fundamental group. In this
case, the statement about the homotopy-equivalences corresponds to
a purely group theoretic result on the outer automorphism group of
π1(X).

For aspherical spaces with finitely generated nilpotent fundamental
group natural compact smooth model spaces exist. These spaces are
traditionally called nilmanifolds. Among all smooth manifolds repre-
senting a given nilpotent aspherical homotopy type, nilmanifolds are
characterised by their distinctive geometric properties, for example, the
existence of almost flat Riemannian metrics. Surprisingly, there do ex-
ist also exotic smooth models in a nilpotent aspherical homotopy type,
which are then not diffeomorphic to any nilmanifold.

Quite close to nilmanifolds, but less well understood, are solvman-
ifolds and their finite geometric quotients, which are called infrasolv-
manifolds. By definition, a solvmanifold is a homogeneous space for a
solvable Lie group. Generalising nilmanifolds (which admit a transi-
tive action of a nilpotent Lie group), these smooth manifolds do pro-
vide natural compact smooth models for aspherical manifolds with a
(torsion-free) polycyclic by-finite fundamental group.

Here come two problems, which are in the realm of the above ideas.

The first concerns the existence of ”good” geometric structures on
smooth aspherical compact manifolds with solvable fundamental group.
(Note that, in this case, the fundamental group is necessarily a poly-
cyclic group.)

Problem 1).
A recent result states that a compact aspherical Kähler-manifold with
solvable fundamental group is (diffeomorphic) to an infra-nilmanifold,
which is finitely covered by a smooth standard torus. On the other
hand, it is well known that there exist many solv- and nilmanifolds
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(not necessarily covered by a torus) which admit a complex mani-
fold structure. Problem: Given any aspherical compact complex man-
ifold with solvable fundamental group, is it diffeomorphic to an infra-
solvmanifold?

The second problem concerns Sullivan’s arithmeticity result for nilpo-
tent spaces.

Problem 2).
As proved recently, the outer automorphism group of any polycyclic
by finite group, and, hence, also the group of homotopy equivalences
of any aspherical space with a polycyclic by finite fundamental group
is an arithmetic group. Hence, we ask: Does Sullivan’s arithmeticity
result for nilpotent spaces carry over to a (suitable) more general class
of polycyclic spaces?

For more background on problem 1), see Baues, Cortes, Aspherical
Kähler manifolds with solvable fundamental group, math.DG/0601616,
and the references therein. For problem 2), see Baues, Grunewald,
Automorphism groups of polycyclic-by-finite groups and arithmetic
groups, math.GR/0511624.



22 GUIDO’S BOOK OF CONJECTURES



GUIDO’S BOOK OF CONJECTURES 23

8. Gilbert Baumslag
Groups with the same lower central sequences

Two groups G and H are said to have the same lower central se-
quences if

G/γn(G) ∼= H/γn(H)

for every n, where γn(G) denotes the nth term of the lower central series
of G.

Suppose that G and H are residually nilpotent, i.e., suppose that
the intersection of their lower central series is the identity. The basic
question then is how much do two residually nilpotent groups with the
same lower centrals series have in common? So, for example,

• If G and H are both finitely generated and one is finitely pre-
sented, is the other also finitely presented?
• If G and H are both finitely generated and one has finitely

generated H2 with integral coefficients, does the other?
• If G is finitely generated and has the same lower central series

as a free group, is H2(G,Z) = 0? So G is a so-called parafree
group. This question has been tackled by many people and an
incorrect proof has even been published. Bousfield and Kan
have proved that the pronilpotent completion of a residually
nilpotent group has the same lower central sequence as any
given finitely generated residually nilpotent group. These com-
pletions turn up in homotopy theory, one of Guido’s interests.
However they do not, for the most part, reflect the properties
of a given residually nilpotent group. It should be noted that
the pronilpotent completion of a finitely generated, residually
nilpotent group is finitely generated only if the group itself is
nilpotent. In the case of a non–abelian, finitely generated free
group, Bousfield and Kan have shown that the second homology
group with integral coefficients of its pronilpotent completion
has as many elements as the reals. So it is definitely not 0.
• If G and H are finitely generated nilpotent groups and have the

same finite images, do they have the same homology?

The last of these questions is especially formulated for Guido who has
been interested from time to time in the so-called genus of finitely
generated nilpotent groups.

And Happy Retirement, Guido.
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9. Paul Baum
The Extended Quotient

Let Γ be a finite group acting on a (topological space X or) an affine
variety X.

Γ×X → X

The quotient variety (or quotient topological space) X/Γ is obtained
by collapsing each orbit to a point.

For x ∈ X, Γx denotes the stabilizer group of x.

Γx = {γ ∈ Γ | γx = x}

c(Γx) denotes the set of conjugacy classes of Γx.
The extended quotient is obtained by replacing the orbit of x by

c(Γx).
This is done as follows:
Set X̃ = {(γ, x) ∈ Γ×X | γx = x}
X̃ ⊂ Γ×X
X̃ is an affine variety and is a sub-variety of Γ×X.
Γ acts on X̃.
Γ× X̃ → X̃
g(γ, x) = (gγg−1, gx) g ∈ Γ (γ, x) ∈ X̃
The extended quotient, denoted X//Γ, is X̃/Γ.
i.e. The extended quotient X//Γ is the ordinary quotient for the

action of Γ on X̃.
The extended quotient is an affine variety (or a topological space).

The evident projection X̃ → X (γ, x) 7→ x passes to quotient spaces
to give a map ρ : X//Γ → X/Γ. ρ is the projection of the extended
quotient onto the ordinary quotient.

Let G be a reductive p-adic group. Examples are:
GL(n, F ) SL(n, F ) where F is any finite ex-

tension of the p-adic numbers Qp

Let V be a vector space over the complex numbers C.

Definition 9.1. A representation

φ : G→ AutC(V )

of G is smooth if for every v ∈ V ,

Gv = {g ∈ G | φ(g)v = v}

is an open subgroup of G.

Ĝ denotes the set of equivalence classes of smooth irreducible repre-
sentations of G.

One of the main problems in the representation theory of p-adic
groups (which is closely related to the local Langlands conjecture) is

to describe Ĝ.
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The Hecke algebra of G, denoted HG is the convolution algebra
of all complex-valued locally-constant compactly-supported functions

f : G → C. Ĝ is in bijection with the set of primitive ideals in HG.
On the set of primitive ideals in HG there is the Jacobson topology.
Hence we may consider each connected component of the primitive
ideal space. Typically there will be countably many of these connected
components.

C× denotes the (complex) affine variety C− {0}.

Definition 9.2. A complex torus is a (complex) affine variety T such
that there exists an isomorphism of affine varieties

T ∼= C× × C× × · · · × C×.

J. Bernstein assigns to each α ∈ πoPrimHG a complex torus Tα and
a finite group Γα acting on Tα.

He then forms the quotient variety Tα/Γα and proves that there
is a surjective map (the infinitesimal character) πα mapping Xα onto
Tα/Γα.

Xα
πα // Tα/Γα

Xα is the connected component of Prim(HG) corresponding to α. In
Bernstein’s work Xα is a set (i.e. is only a set) so πα is a map of sets.
πα is surjective, finite-to-one and generically one-to-one.

Conjecture. There is a certain resemblance between

Tα//Γα

ρα

��

Xα

πα

��

and

Tα/Γα Tα/Γα

Here ρα is (as above) the projection of the extended quotient onto
the ordinary quotient. How can this conjecture be made precise?

For the precise conjecture see papers of A-M. Aubert, P. Baum and
R. Plymen.
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10. Dave Benson
The regularity conjecture in the cohomology of groups

Dear Guido,
Here is a conjecture I’m rather fond of. It’s about the cohomology of

finite groups. Let k be a field of characteristic p and let G be a finite
group.

Conjecture 10.1. The Castelnuovo–Mumford regularity of the coho-
mology ring is equal to zero:

RegH∗(G, k) = 0.

This conjecture was first announced at the opening workshop of the
MSRI commutative algebra year (1), as a refinement of a conjecture
of Benson and Carlson (4). Subsequent work on the conjecture was
reported in (2) and (3).

We begin with the definitions. Let H be a finitely generated graded
commutative k-algebra, with H0 = k and H i = 0 for i < 0 (e.g., H =
H∗(G, k)). Write m for the maximal ideal generated by the elements of
positive degree. If M is a graded H-module then the local cohomology
is doubly graded: H i,j

m M denotes the part in local cohomological degree
i and internal degree j. Local cohomology can either be regarded as
the right derived functors of the m-torsion functor Γm(M) = {x ∈
M | ∃n ≥ 0, mn.x = 0 }, or as the cohomology of the stable Koszul
complex (see for example Theorem 3.5.6 of Bruns and Herzog 6). The
a-invariants of M are defined to be

ai
m(M) = max{j ∈ Z | H i,j

m M 6= 0}
(or ai

m(M) = −∞ if H i
mM = 0). The Castelnuovo–Mumford regularity

of M is then defined as

RegM = max
i≥0
{ai

m(M) + i}.

Of particular interest is the regularity of the ring itself, RegH.
The reason for the interest in local cohomology of group cohomology

comes from the Greenlees version (7) of Benson–Carlson duality (4), in
the form of a spectral sequence

H i,j
m H∗(G, k)⇒ H−i−j(G, k).

In particular, the existence of the “last survivor” of (4) shows the fol-
lowing (2):

Theorem 10.2. RegH∗(G, k) ≥ 0.

The regularity conjecture is known to hold in the following situations:

• H∗(G, k) is Cohen–Macaulay (e.g., groups with abelian Sylow
p-subgroups; groups with extraspecial Sylow 2-subgroups with
p = 2; groups of Lie type with characteristic coprime to p) (1)
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• Krull dimension minus depth at most two (e.g., 2-groups of
order ≤ 64) (2)
• Symmetric and alternating groups in any characteristic (these

are examples where Krull dimension minus depth is arbitrarily
large) (3)

There is also a corresponding conjecture for compact Lie groups. Let
G be a compact Lie group of dimension d, and suppose that the adjoint
action of G on Lie(G) preserves orientation. Then there is a spectral
sequence (Benson–Greenlees (5))

H i,j
m H∗(BG; k)⇒ H−i−j−d(BG; k).

Conjecture 10.3. RegH∗(BG; k) = −d.

To explain the orientation condition, let G = T 3 o Z/2, a semidirect
product of a 3-torus by an involution acting through inversion, and
k be a field of characteristic 6= 2. Then H∗(BG; k) = H∗(BT ; k)Z/2

is Cohen–Macaulay but not Gorenstein, and RegH∗(BG; k) = −5.
The appropriate modification in this situation is that if ε denotes the
orientation character, then RegH∗(BG; ε) = −d.
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11. Vitaly Bergelson
Questions on amenability

Dear Guido,
As you will -hopefully- discover very soon, retirement means more

freedom. In particular, more freedom to think about anything you
want. I hope that some of the following questions may entertain you.

Fondly, Vitaly

I. Some questions about amenable groups.

Question 11.1. Is it true that any infinite amenable group contains an
infinite abelian subgroup (this is of course of interest only for torsion
groups)?

Question 11.2. For solvable non-virtually nilpotent groups, is there a
canonical way of constructing a Følner sequence ? (Say, in terms of
generators or judiciously chosen neighborhoods of the identity.)

Question 11.3. Is there a nice characterization of amenability of a
group G via the topological algebra in βG, the Stone-Cech compactifi-
cation of G? (Here the term “topological algebra” refers to properties
of left or right ideals, idempotents, etc.)

Definition 11.4. A set R ⊆ G \ {e} is said to have property TR (for
Topological Recurrence) if for every minimal action of G by homeomor-
phisms Tg, g ∈ G of a compact metric space X and any open non-empty
set U ⊆ X there exists g ∈ R such that U ∩ TgU 6= ∅. Here minimal

means that, for any x ∈ X, {Tgx, g ∈ G} = X. A set R ⊆ G \ {e} is
said to have property MR (for Measurable Recurrence) if for any action
of G by measure preserving transformations Tg, g ∈ G on a probability
space (X,B, µ) and any A ∈ B with µ(A) > 0 there exists g ∈ R such
that µ(A ∩ TgA) > 0.

Conjecture 11.5. A countable discrete group is amenable if and only
if property MR implies property TR (that is, every set of measurable
recurrence is a set of topological recurrence).

There are amenable groups which are minimally almost periodic, i.e.
have no non-trivial finite-dimensional unitary representations. In the
language of ergodic theory this simply means that any ergodic finite
measure preserving action of such group is automatically weakly mixing.
One more equivalent formulation of this property is the following:

Definition 11.6. An amenable group G is minimally almost periodic
if for any unitary representation (Ug)g∈G on a Hilbert space H, one has
a G-invariant splitting H = Hinv⊕Hwm, where Hinv = {f ∈ H : Ugf =
f∀g ∈ G} and Hwm = {f ∈ H : ∀ε > 0 the set {g ∈ G : | 〈Ugf, f〉 | <
ε} is neglectable }, where a set is called neglectable if for any Følner

sequence (Fn)n∈N one has |S∩Fn|
|Fn| → 0 as n→∞.
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Question 11.7. Are there countable discrete amenable groups for which
the neglectable set appearing in the above splitting is always finite? In
other words, are there amenable groups G possessing (similarly to, say,
SL(2,R)) the property of “decay of matrix coefficients” meaning that
for any unitary action Ug : H → H, g ∈ G which has no invariant
vectors, one has, for all f ∈ H, 〈Ugf, f〉 → 0 as g →∞.

II. Some questions on invariant means. One of the many equiv-
alent definitions of amenability for discrete groups is the postulation
of the existence of invariant means on the Banach space BR(G) of
bounded real-valued functions on the group G. But even when G is
non-amenable, certain important classes of functions on G possess an
invariant and even unique mean. For example, by Ryll-Nardzewsky
theorem [R-N], if G is any locally compact group, the space WAP (G)
of weakly almost periodic functions on G has a unique invariant mean.
Since positive definite functions are weakly almost periodic, this im-
plies that there exists a unique on the algebra of functions of the form
ϕ(g) = 〈Ugf1, f2〉, where Ug : H → H, g ∈ G is a unitary represen-
tation of G on a Hilbert space H and f1, f2 ∈ H. One can show (see
for example [S]) that any such function ϕ can also be represented as
ϕ(g) =

∫
f1(Tgx)f2(x) dµ(x) where (Tg)g∈G is a measure-preserving ac-

tion of G on a probability space (X,B, µ) and f1, f2 ∈ L∞(X,B, µ).
This makes natural the following question:

Question 11.8. Let G be a locally compact group, let k ∈ N and let

(T
(1)
g )g∈G, (T

(2)
g )g∈G, . . . , (T

(k)
g )g∈G be k commuting measure-preserving

actions of G on a probability space (X,B, µ). (“Commuting” means

that T
(i)
g T

(j)
h = T

(j)
h T

(i)
g .) Is it true that there exists a unique invariant

mean on the algebra of functions on G generated by the functions of
the form

ϕ(g) =

∫
f0(x)f1(T

(1)
g x)f2(T

(2)
g T (1)

g x) . . . fk(T
(k)
g . . . T (2)

g T (1)
g x) dµ,

where fi ∈ L∞(X,B, µ), i = 0, 1, . . . , k.

Remark 11.9. The answer is YES for k = 1 (as explained above) and,
if G is amenable, for k = 2 (follows from [BMZ]).
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12. A. Jon Berrick and Jonathan A. Hillman
The Whitehead Conjecture and L(2)-Betti numbers

In (8), J. H.C. Whitehead asked whether any subcomplex of an as-
pherical 2-dimensional complex must be aspherical. An affirmative
answer to this question is widely known as the Whitehead Conjecture.

Failure of the Whitehead Conjecture implies either

(a) there is a finite 2-complex X with π2(X) 6= 0 and a map f :
S1 → X such that Y = X ∪f e

2 is contractible; or
(b) there is an infinite ascending chain Kn ⊂ Kn+1 of finite 2-

complexes with π2(Kn) 6= 0 for all n and such that ∪n≥1Kn is
aspherical. (4)

Moreover, a counterexample of the first type implies the existence of a
counterexample of the second type (6).

Our concern here is with the finite case of the conjecture, namely
the assertion that any subcomplex of a finite aspherical 2-complex is
also aspherical. This assertion implies that (a) above does not hold.
An interesting question is whether the negation of (a) above is actually
equivalent to the finite case of the conjecture.

If X is a finite 2-complex such that Y = X ∪f e
2 is contractible then

π = π1(X) has a presentation of deficiency 1 (since χ(X) = 0), and π
is the normal closure of the element represented by the attaching map
f ; so π has weight 1. Conversely, the usual 2-complex of any deficiency
1 presentation of a group π of weight 1 is such a finite subcomplex X of
a contractible 2-complex (where f corresponds to a normal generator
of π). (Every such group π is the group of a 2-knot (5).)

We now introduce L2-Betti numbers β
(2)
i (6) into this situation. Rel-

evant facts here include that for a finite 2-complex X,

χ(X) = χ(2)(X) = β
(2)
0 (X)− β(2)

1 (X) + β
(2)
2 (X)

and β
(2)
i (X) = β

(2)
i (π1(X)) for i = 0, 1. (The question of whether the

equality of the two Euler characteristics still holds for finitely domi-
nated X relates to the weak Bass conjecture for π1(X) (1).)

A finite 2-complex X is aspherical if χ(X) = 0 and β
(2)
1 (X) = 0 (3).

From (2), the L2-Betti number condition is satisfied if, for instance,
π1(X) has an infinite subgroup that is

(i) amenable and ascendant; or
(ii) finitely generated, subnormal and of infinite index.

In fact, in the presence of (i), χ(X) = 0 is necessary and sufficient
for asphericity. On the other hand, in the presence of (ii) instead,
χ(X) = 0 is not necessary for asphericity. To see this, take for X the
classifying space of the group F (2)×F (2), where F (2) denotes the free
group of rank 2; here χ(X) = 1.



GUIDO’S BOOK OF CONJECTURES 31

If πK is the group of a tame classical knotK ⊂ S3 then β
(2)
1 (πK) = 0

(see §4.3 of (7)), and so the 2-complex associated to any deficiency 1
presentation of a classical knot group is aspherical.

On the basis of this modest evidence, we suggest that a better un-
derstanding of L2-Betti numbers may contribute to the finite case of
the Whitehead Conjecture.

Question. If a group π has weight 1 and a finite presentation of

deficiency 1, is β
(2)
1 (π) = 0 ?

Neither deficiency 1 alone nor weight 1 alone is enough. The free
product Z ∗ Z/2Z has deficiency 1, but it is also a semidirect product

Z ∗ Z/2Z ∼= F (2) o Z/2Z and so β
(2)
1 (Z ∗ Z/2Z) = 1

2
β

(2)
1 (F (2)) > 0.

The free product Z/2Z ∗Z/3Z has weight 1 (since equating generators
for the free factors kills the group), but its commutator subgroup is free

of rank 2 and has index 6, so β
(2)
1 (Z/2Z ∗ Z/3Z) = 1

6
β

(2)
1 (F (2)) > 0.

(Neither of these groups is π1 of a finite aspherical complex.)

On the other hand, Z2 has deficiency 1 and β
(2)
1 (Z2) = 0, but clearly

Z2 has weight 2. The semidirect product (Z/3Z)o−1Z has weight 1 and

β
(2)
1 ((Z/3Z) o−1 Z) = 0, but this group has deficiency 0. Thus neither

hypothesis “deficiency 1” nor “weight 1” is implied by the conjunction

of the other with the condition β
(2)
1 (π) = 0.

We wish you an entertaining retirement, Guido, and hope you seize
opportunities to visit our part of the world.
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13. Martin R. Bridson and Michael Tweedale
Putative relation gaps

Dear Guido,
We thought that you might enjoy the following concrete speculations

concerning the efficiency of finite group-presentations.

Given Γ =
〈
A

∣∣ R〉
, the action of the free group F (A) by con-

jugation on R = 〈〈R〉〉 induces an action of Γ on the abelian group
M = R/[R,R]. It is obvious that the rank of M as a ZΓ-module serves
as a lower bound on the minimal number of relators that one requires
to present Γ on the generators A. This lower bound seems so crude
that one cannot imagine it would be sharp in general. And yet, despite
sustained attack over many years, not a single example has been es-
tablished to lend substance to this intuition. The question of whether
or not there exists such an example has become known as the relation
gap problem.

It belongs to a circle of notoriously hard problems concerning the
homotopy properties of finite 2-complexes — the Andrews–Curtis con-
jecture, Whitehead’s asphericity conjecture, the Eilenberg–Ganea con-
jecture, and the question (resolved by Bestvina and Brady) of finite
presentability versus FP2.

To clarify our convictions regarding the relation gap problem we
state:

Conjecture 13.1. There exist finitely presented groups with arbitrarily
large relation gaps.

This conjecture is closely related to the D(2) conjecture: if a group
Γ with H3(Γ;ZΓ) = 0 admits a presentation that both realizes the
group’s deficiency and has a relation gap, then the D(2) conjecture is
false, i.e. there exists a finite 3-complex that looks homologically like
a 2-complex, in the sense that it possesses Wall’s property D(2), but
that does not have the homotopy type of a 2-complex17.

In the remainder of this note, we’ll describe two families of groups
and indicate why we think that they ought to have relation gaps, mak-
ing explicit conjectures to that effect. The two families are of a very dif-
ferent nature: the first consists of groups with finite classifying spaces,
based on the Bestvina–Brady construction; the second is comprised of
virtually free groups and it is the nature of the torsion that dictates the
key features of the relation module that we believe lead to a relation
gap.
Cyclic coverings and right-angled Artin groups. Let Σ be a
connected flag complex with non-trivial, perfect fundamental group,
and let G be the associated right-angled Artin group. This group has
a presentation with generating set the vertices vi of Σ, and defining

17The result is due to M. Dyer; for a proof, see J. Harlander (MR1751092).
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relations asserting that two generators commute if and only if the cor-
responding vertices in Σ are joined by an edge. Let π : G→ Z be the
homomorphism sending each vi to a fixed generator. The kernel of π is
the Bestvina–Brady group HΣ, which is FP2 but not finitely presented.

Let Γn ⊂ G be the index n subgroup π−1(nZ). Notice that HΣ is
the intersection of the Γn. We construct a presentation for Γn where
the generators Sn are indexed by the vertices of Σ and the ZΓ-rank of
the relation module is bounded independently of n.

Conjecture 13.2. The number of relators needed to present Γn on the
generators Sn goes to infinity as n → ∞, so Γn has a relation gap for
n sufficiently large.

Some virtually free examples. We consider groups similar in spirit
to ones considered by D. Epstein, C. Hog-Angeloni, W. Metzler and
M. Lustig, and more recently by K. Gruenberg and P. Linnell.

Given letters xm and tm, let ρm be the word

ρm = (tmxmt
−1
m )xm(tmx

−1
m t−1

m )x−m
m .

We look at the groups Γm,n = Qm ∗Qn, where

Qm =
〈
xm, tm

∣∣ ρm, x
m−1
m

〉
and (mm−1 − 1) and (nn−1 − 1) are coprime.

One of the main attractions we see in these new examples is that
one can give a short, transparent and natural proof that the relation
module of the obvious presentation of Γm,n can be generated by three
elements, namely the images of ρm, ρn and xm−1

m xn−1
n .

The groups Γ = Γm,n are virtually free, so H3(Γ;ZΓ) = 0. Thus one
could find both a relation gap and a counterexample to the D(2) con-
jecture simply by solving the following concrete problem:

Conjecture 13.3. The kernel of the map F4 → Γ associated to the
presentation

Γ =
〈
xm, tm, xn, tm

∣∣ ρm, x
m−1
m , ρn, x

n−1
n

〉
is not the normal closure of three elements.
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14. Jacek Brodzki, Graham A. Niblo and Nick Wright
Property A and exactness of the uniform Roe algebra

It has long been established that certain properties of groups can be
described through properties of suitably chosen C∗-algebras associated
with them. A model result in this direction is a theorem of Lance that a
discrete group is amenable if and only if its reduced C∗-algebra C∗r (G)
is nuclear.

Property A was introduced by Yu as a geometric analogue of the
Følner criterion that describes amenability of a group. It implies many
of the interesting consequences of amenability for a discrete group, for
example, property A implies uniform embeddability in Hilbert space,
which in turn gives the Coarse Baum-Connes conjecture and therefore
the Novikov conjecture 18.

Property A and the uniform Roe algebra can be defined for arbitrary
metric spaces. Let us recall the main definitions.

A uniformly discrete metric space (X, d) has property A if for all
R, ε > 0 there exists a family of finite non-empty subsets Ax of X ×N,
indexed by x in X, such that

• for all x, y with d(x, y) < R we have |Ax∆Ay |
|Ax∩Ay | < ε;

• there exists S such that for all x and (y, n) ∈ Ax we have
d(x, y) ≤ S.

The uniform Roe algebra, C∗u(X), is the C∗-algebra completion of
the algebra of bounded operators on l2(X) which have finite propaga-
tion. The details are as follows. A kernel u : X × X → C has finite
propagation if there exists R ≥ 0 such that u(x, y) = 0 for d(x, y) > R.
If X is a proper discrete metric space, and u : X × X → C is a fi-
nite propagation kernel then for each x there are only finitely many
y with u(x, y) 6= 0. Thus u defines a linear map from l2(X) to itself,
u ∗ ξ(x) =

∑
y∈X u(x, y)ξ(y). Note that if additionally X has bounded

geometry, then every bounded finite propagation kernel gives rise to a
bounded operator on l2(X). The uniform Roe algebra is the comple-
tion of the algebra generated by bounded linear operators arising from
bounded propagation kernels.

For a discrete group G, Yu’s property A is equivalent both to the
nuclearity of the uniform Roe algebra C∗u(G) and to the exactness
of the reduced C∗-algebra C∗r (G). This follows from the results of

18G.L. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform
embedding into a Hilbert space, Inventiones Mathematicae 138 (2000), 201–240.
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Anantharaman-Delaroche and Renault 19, Higson and Roe 20, Guent-
ner and Kaminker 21, and Ozawa 22.

It is natural to state the following conjecture.

Conjecture 14.1. A uniformly discrete bounded geometry metric space
X has property A if and only if the uniform Roe algebra C∗u(X) is exact.

In evidence for the conjecture we offer the following. The conjecture
is true for any countable discrete group equipped with its natural coarse
structure. It is then an easy exercise to show that the conjecture holds
for any metric space which admits a proper co-compact action by a
group of isometries.

We proved recently 23 that the conjecture also holds if the space is
sufficiently group-like in the following sense.

One of the key ingredients in the proof of the conjecture for groups is
the interplay between the left and the right action of a group on itself.
By convention, the left action is by isometries while the right action
has the curious property that each point is moved by the same distance
by a given element of the group. By analogy with Euclidean geometry
we call such transformations translations even though they are not
in general isometries. It is often overlooked that it is the translation
action, rather than the isometric action, that allows one to identify
C∗r (G) with a subalgebra of the uniform Roe algebra C∗u(G). One may
abstract from this the notion of a translation structure for a space.
We can then say that a space is more or less group-like depending on
how much this structure resembles the natural left-right multiplication
structure on a group.

When the space X is sufficiently group-like in this sense, the con-
jecture holds for X. For example, this is the case when X embeds
uniformly in a group.

19C. Anantharaman-Delaroche and J. Renault, Amenable groupoids. Mono-
graphs of L’Enseignement Mathématique, 36. Geneva, 2000.

20N. Higson and J. Roe, Amenable group actions and the Novikov conjecture, J.
Reine Angew. Math. 519 (2000), 143–153.

21E. Guentner and J. Kaminker, Exactness and the Novikov conjecture, Topology
41 (2002), no. 2, 411–418.

22N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad.
Sci. Paris Sér. I Math. 330 (2000), no. 8, 691–695.

23J. Brodzki, G. A. Niblo, N. J. Wright, Property A, partial
translation structures and uniform embeddings in groups, preprint,
http://front.math.ucdavis.edu/math.OA/0603621.
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15. Michelle Bucher-Karlsson and Anders Karlsson
Volumes of ideal simplices in Hilbert’s geometry and

symmetric spaces

Dear Guido,
We, the two authors of this note, first met each other in a weekly

seminar that you organized at ETHZ and our first joint publication
was in fact an outgrowth of one of those very appreciated seminars. It
is therefore an extra pleasure for us to jointly contribute to the present
volume. We learnt a lot from you in our years in Zurich and maybe
you can help us once more with the following geometric question we
are interested in:

Let X be a bounded convex domain in Rn endowed with its natural
Hilbert’s metric d, where d(x, y) equals the logarithm of the projective
cross-ratio of x and y, and the endpoints of the chord through x and
y. It is also a Finslerian metric and as such there is a natural notion
of volume.

The question is to study the volume of ideal simplices in this ge-
ometry. Of particular interest is to find out which admit the minimal
or maximal volume, and whether the volume at all is bounded. Two
examples:

• Let X be a ball in Rn. Then X with the Hilbert metric is
nothing but the n-dimensional hyperbolic space. It is a well
known result of Haagerup and Munkholm that the volume of
an ideal geodesic simplex is maximal if and only if the simplex
is regular, i.e. any permutation of its vertices can be realized
by an isometry.
• Let X be triangle in R2. To avoid degeneracies, we restrict

our attention to simplices which have their three vertices on
the three different 1-faces of X. Colbois, Vernicos and Verovic
showed that, while the volume (or area) of ideal triangles is
unbounded, its minimum is attained by the simplex having as
vertices the midpoints of the 1-faces of X - and its isometric
copies of course. This can be given an elementary proof without
any computation and without knowing the exact definition of
the invariant volume, once it is observed that those simplices
are here again, the regular ones.

Thus, the slogan we would like to advocate here, is that ”most reg-
ular” simplices have extremal volume.

The symmetric space SL(n,R)/SO(n) has a natural model as a
bounded, convex domain in Rn(n+1)/2, namely as the positive definite
matrices normalized to have trace equal to 1. The action of SL(n,R)
on SL(n,R)/SO(n) is then given by the projective transformations
S 7→ g · S = (1/tr(gSgt))gSgt. Note that the Riemannian symmetric
metric does not coincide with the Hilbert metric. The Hilbert volume
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or the Riemannian volume can be used to define a cocycle

V : (g0, ..., gd) 7−→ Vol〈g0 · x, ..., gd · x〉
mapping the (d+1)-tuple of elements of SL(n,R), where d denotes the
dimension of SL(n,R)/SO(n), to the volume of the convex simplex
with vertices the orbit of a fixed point x in SL(n,R)/SO(n). The
cocycle V represents the top dimensional generator of the real valued
continuous cohomology H∗

c (SL(n,R)) of SL(n,R).

Question 15.1. Is the cocycle V uniformly bounded?

A positive answer to this question would give a new unified proof of
the fact that compact manifold whose universal cover is isometric to
the symmetric space SL(n,R)/SO(n) have strictly positive simplicial
volume, proven by Thurston for n = 2, by the first-named author of
this note for n = 3 and by Lafont and Schmidt for n ≥ 4.

The behavior of the Hilbert volume in SL(n,R)/SO(n) is mixed,
since the latter space contains both isometric copies of the hyperbolic
space and of triangles.

Question 15.2. Which convex simplices in SL(n,R)/SO(n) have ex-
tremal volume?

The understanding of these questions also in the cases of lower-
dimensional simplices and volumes may furthermore yield insights, or
the solution of, the conjecture on the surjectivity of the comparison
map

H∗
c,b(SL(n,R))→ H∗

c (SL(n,R))

for SL(n,R) discussed in this volume by Burger, Iozzi, Monod and
Wienhard.
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16. Marc Burger, Alessandra Iozzi, Nicolas Monod and Anna
Wienhard

Bounds for cohomology classes

Let G be a simple Lie group (connected and with finite centre). Con-
sider the continuous cohomology H∗(G,R) of G, which can be defined
for instance with the familiar bar-resolutions of the Eilenberg–MacLane
cohomology, except that the cochains are required to be continuous
maps on G (or equivalently smooth or just measurable).

Conjecture 16.1. Every cohomology class of H∗(G,R) is bounded,
i.e. is represented by a bounded cocycle.

Recall that H∗(G,R) is isomorphic to the algebra of invariant differ-
ential forms on the symmetric space associated to G, hence to a relative
cohomology of Lie algebras and thus moreover to the cohomology of the
compact dual space associated to G. It is however not understood how
these isomorphisms interact with boundedness of cochains (compare
Dupont24).

We emphasise also that, unlike for discrete groups, H∗(G,R) does
not coincide with the cohomology of the classifying space BG. There is
however a natural transformation H∗(BG,R)→ H∗(G,R) and we refer
to its image as the primary characteristic classes. By a difficult result
of M. Gromov25, the latter are indeed bounded; M. Bucher-Karlsson
gave a simpler proof of this fact in her thesis26.

In order to prove the above conjecture, it would suffice to estab-
lish the boundedness of the secondary invariants of Cheeger–Simons;
indeed, Dupont–Kamber proved that the latter together with the pri-
mary classes generate H∗(G,R) as an algebra.

An important example where boundedness was established very re-
cently is the class of the volume form of the associated symmetric
space. Using estimates by Connell–Farb27, Lafont–Schmidt28 provided
bounded cocycles in all cases except SL3(R), the latter case being set-
tled by M. Bucher-Karlsson29 (a previous proof of R. Savage is incor-
rect). It follows that the fundamental class of closed locally symmetric
spaces is bounded; as explained by M. Gromov, this provides a non-
zero lower bound for the minimal volume of such a manifold, i.e. a
non-trivial lower bound for its volume with respect to any (suitably
normalised) Riemannian metric.

24in Algebraic topology, Aarhus 1978, 109–119, Springer 1979.
25Publ. Math. IHÉS, (56):5–99, 1982.
26PhD thesis, ETHZ Diss. Nr. 15636, 2004.
27J. Differential Geom., 65(1):19–59, 2003.
28Acta Mathematica, to appear.
29Simplicial volume of locally symmetric spaces covered by SL3(R)/SO(3),

preprint.
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Many more questions are related to the above conjecture via the fol-
lowing steps listed in increasing order of refinement: (i) find a bounded
cocycle representing a given class; (ii) establish a sharp numerical
bound for that class; (iii) determine the equivalence class of the co-
cycle up to boundaries of bounded cochains only.

The latter point leads to introduce the (continuous) bounded coho-
mology H∗

b of groups or spaces, where all cochains are required to be
bounded. There is then an obvious natural transformation

H∗
b(−,R) −→ H∗(−,R) (∗)

and the above conjecture amounts to the surjectivity of that map for a
connected simple Lie group with finite centre. As of now, there is not
a single simple Lie group for which H∗

b(G,R) is known; all the partial
results are however consistent with a positive answer to the following:

Question 16.2. Is the map (∗) an isomorphism?

For instance, the answer is yes in degree two30 (and trivially yes in
degrees 0, 1); for G = SLn(R), it is also yes in degree three31.

The functor H∗
b is quite interesting for discrete groups as well and

has found applications notably to representation theory, dynamics, ge-
ometry and ergodic theory. This notwithstanding, there is not a single
countable group for which H∗

b(−,R) is known, unless it is known to van-
ish in all degrees (e.g. for amenable groups). In any case, the map (∗)
fails dramatically either to be injective or surjective in many examples.
Most known results regard the degree two, with for instance a large
supply of groups having an infinite-dimensional H2

b(−,R), including
the non-Abelian free group F2. Interestingly, the surjectivity of the
map (∗) (with more general coefficients) in degree two characterises
non-elementary Gromov-hyperbolic groups (Mineyev32).

It appears that new techniques are required in higher degree. Here
is a test on which to try them:

Question 16.3. For which degrees n is Hn
b(F2,R) non-trivial?

It is known to be non-trivial for n = 2, 3. (Triviality for n = 1 and
non-triviality for n = 0 are elementary to check for any group.)

30see Burger–Monod, Geom. Funct. Anal., 12(2):219–280, 2002.
31For n = 2: Burger–Monod, in Rigidity in dynamics and geometry, 19–37,

Springer 2002. For n ≥ 3: N. Monod, Contemp. Math. 347:191–202, AMS 2004.
32Q. J. Math., 53(1):59–73, 2002.
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17. Cornelia M. Busch
Worry about primes in Farrell cohomology

Dear Guido,
we suffered headache while I was thinking about the following ques-

tion.

Question 17.1. Let p be any odd prime, and let Sp(p − 1,Z[1/n])
denote the group of symplectic (p− 1)× (p− 1)-matrices over Z[1/n],
where 0 6= n ∈ Z is any nonzero integer. What is the p-period of the
Farrell cohomology ring

Ĥ∗(Sp(p− 1,Z[1/n]),Z) ?

Here are some partial answers.
The symplectic group Sp(p−1,Z[1/n]) has finite virtual cohomologi-

cal dimension and moreover each elementary abelian subgroup has rank
≤ 1. There are nontrivial subgroups of order p in Sp(p − 1,Z[1/n]).
The following property was proven by K. S. Brown33:

Let G be a group with finite virtual cohomological dimension and
such that each elementary abelian p-subgroup of G has rank ≤ 1. Then

Ĥ∗(G,Z)(p)
∼=

∏
P∈P

Ĥ∗(N(P ),Z)(p),

where P is a set of representatives of conjugacy classes of subgroups

P of order p in G and N(P ) is the normalizer of P . Here Ĥ∗(G,Z)(p)

denotes the p-primary part of the Farrell cohomology of G with coeffi-
cients in Z.

In order to use this property, we analyze the structure of the nor-
malizer of subgroups of order p in Sp(p − 1,Z[1/n]). The conjugacy
classes of elements of order p in Sp(p−1,Z[1/n]) are related to the ideal
classes in Z[1/n][ξ], where ξ is a primitive pth root of unity. First we
consider the case n = 1. The number of conjugacy classes of elements
of order p in Sp(p− 1,Z) depends on h−, the relative class number of
the cyclotomic field Q(ξ). We get the following result34.

Theorem 17.2. Let p be an odd prime for which the relative class
number h− is odd and let y be such that p− 1 = 2ry with y odd. Then

the period of Ĥ∗(Sp(p− 1,Z),Z)(p) equals 2y.

The smallest prime p for which h− is even is p = 29. In fact it isn’t
known if the statement of this theorem is also true for primes with even
relative class number. We can avoid the class number by replacing the
ring Z with Z[1/n], 0 6= n ∈ Z, because it is possible to choose the

33K. S. Brown, Cohomology of Groups, GTM 87, Springer 1982.
34C. M. Busch, The Farrell cohomology of Sp(p− 1, Z), Documenta Mathematica

7 (2002), 239-254.
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integer n such that Z[1/n][ξ] is a principal ideal domain. Then we get
the following theorem35.

Theorem 17.3. Let p be an odd prime. Let n be such that Z[1/n][ξ]
and Z[1/n][ξ+ξ−1] are principal ideal domains and moreover p | n. Let
y be the greatest odd divisor of p− 1. Then the p-period of the Farrell
cohomology ring

Ĥ∗(Sp(p− 1,Z[1/n]),Z)

is y if and only if for each j | y a prime q | n exists with inertia degree
fq such that j | p−1

2fq
. If for some j no such q exists, the p-period is 2y.

For every f 6= p an infinite number of primes q exist with qf ≡ 1
mod p because of the theorem of arithmetic progression. Therefore it
is possible to choose n such that for every fq | p − 1 a prime q exists
with q | n and fq is the inertia degree of q.

Now we can try to guess the answer to Question 17.1, but there is
still a long way to go to get the proof.

Conjecture 17.4. Let p be an odd prime and let y be the greatest odd
divisor of p− 1. The p-period of the Farrell cohomology ring

Ĥ∗(Sp(p− 1,Z[1/n]),Z)

is y if and only if for each j | y a prime q | n exists with inertia degree
fq such that j | p−1

2fq
. If for some j no such q exists, the p-period is 2y.

35C. M. Busch, On p-periodicity in the Farrell cohomology of Sp(p− 1, Z[1/n]),
arXiv math.GR/0509693 (2005).
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18. Kai-Uwe Bux
An FPm-Conjecture for Nilpotent-by-Abelian Groups

Let G be a finitely generated metabelian group, i.e., we have short
exact sequence

N −→ G −→ Q

of Abelian groups, wherein the quotient Q in finitely generated and
the kernel N is finitely generated as an ZQ-module. For any homo-
morphism χ : Q → R, let Qχ := {q ∈ Q|χ(q) ≥ 0} be the monoid of
elements in Q non-negative with respect to χ. R. Bieri and R. Strebel
defined the geometric invariant of G as

ΣQ(N) := {χ ∈ Hom(Q,R)|N is finitely generated over ZQχ}
Note that homomorphisms that are positive scalar multiples of one

another define the same non-negative sub-monoid of Q. Thus, the geo-
metric invariant is a conical subset of the real vector space Hom(Q,R).
Also note that Q0 = Q, whence the geometric invariant contains 0 since
G is finitely generated.

Bieri-Strebel showed that ΣQ(N) determines whether G is finitely
presented. However, this information is more easily extracted from the
complement

Σc
Q(N) := ΣQ(N)− Hom(Q,R).

Theorem 18.1. (Bieri-Strebel, [BiSt80]) The following are equivalent:

(1) G is finitely presented.
(2) G is of type FP2.
(3) The complement Σc

Q(N) does not contain two antipodal points,
i.e., whenever χ ∈ Σc

Q(N), then −χ 6∈ Σc
Q(N).

Bieri conjectured that the information about higher finiteness prop-
erties of G is also encoded in Σc

Q(N). Recall that a group G is of type
FPm if there is a partial resolution

Pm → Pm−1 → · · · → P1 → P0 →→ Z

of Z, regarded as the trivial ZG-module, by finitely generated projec-
tive ZG-modules.

Conjecture 18.2 (Bieri). For any m ≥ 2, the following are equivalent:

(1) G is of type FPm.
(2) The complement Σc

Q(N) is m-tame.

Here, we call a conical subset U of a real vector space m-tame if

0 6∈ U + U + · · ·+ U︸ ︷︷ ︸
m summands

Evidence for this conjecture is mounting. It has been proved for many
special cases. In particular, H.Åberg settled the case when N is virtu-
ally torsion free of finite rank [Åb86], and the case m = 3 was settled
by R.Bieri and J. Harlander for the case of split extensions [BiHa98].
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Now, let G be nilpotent-by-Abelian, i.e., suppose G fits into a short
exact sequence

N −→ G −→ Q

where N is nilpotent and Q is Abelian. Again, we assume that G is
finitely generated. In that case, every Abelian factor Mi := Ni/Ni+1

along the lower central series N = N1 > N2 > N3 > · · · is a finitely
generated ZQ-module to which we can associate, as above, a geometric
invariant ΣQ(Mi) and a complement denoted by Σc

Q(Mi).
Note that a necessary condition for G to be of type FPm is that the

homology groups Hi(G;Z) are finitely generated in dimensions up tom.
Therefore, the most optimistic and most straight forward generaliza-
tion of the FPm-conjecture to the class of nilpotent-by-Abelian groups
would be that the metabelian quotient of G contains all of the relevant
information needed besides the obvious homological restrictions. We
thus arrive at:

Conjecture 18.3. For m ≥ 2, the following are equivalent:

(1) G is of type FPm.
(2) The complement Σc

Q(M1) is m-tame and the homology groups
Homi(N ;Z) are finitely generated as ZQ-modules for all dimen-
sions i ∈ {1, 2, . . . ,m}.

Surprisingly, this very optimistic conjecture has some support: By
results of H.Abels, the conjecture holds for m = 2 if G is a solvable
S-arithmetic group over a number field [Ab87]. My own results on
solvable S-arithmetic groups over function fields are also compatible
with the conjecture [Bu04]. However, the conjecture appears too op-
timistic, so a better question might be: is there a way to characterize
the higher FPm-properties of a nilpotent-by-Abelian group G in terms
of its homology and the geometric invariants of the modules Mi?
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19. Carles Casacuberta and Manuel Castellet
Postnikov pieces of finite dimension

Dear Guido,

Perhaps you know the answer to the following question. Can the higher
homotopy groups of a finite CW-complex X be nonzero vector spaces
over the field Q of rationals?

Of course you know that the answer is negative if X is nilpotent.
On the other hand, if X is not nilpotent, then the higher homotopy
groups of X need not be finitely generated, not even as modules over
the integral group ring of the fundamental group of X (Stallings gave
a counterexample in 1963). Hence, the question does make sense.

What is your intuition about it? At first we thought that it is very
unlikely that anybody finds a finite CW-complex X such that, say,
π2(X) ∼= Q. However, we have been unable to discard this possibility
in spite of considerable effort, so we would not be surprised if such an
example existed.

Let us now explain why this question is relevant and give a reason
why we would like the answer to be negative.

Finite-dimensional Postnikov pieces

Are there CW-complexes of finite dimension with only a finite number
of nonzero homotopy groups? Yes, indeed: a wedge of circles, a torus
or a Klein bottle are examples, as well as any compact surface of higher
genus. Note that each of these examples is a K(G, 1). Rational spheres
and rational complex projective spaces are examples with nontrivial
higher homotopy groups. These admit finite-dimensional models, yet
surely not finite.

The following theorem appeared in [C. Casacuberta, On Postnikov
pieces of finite dimension, Collect. Math. 49 (1998), 257–263]: If X is
a CW-complex of finite dimension with only a finite number of nonzero
Postnikov invariants, then X is a Postnikov piece and its higher ho-
motopy groups πn(X) are Q-vector spaces for n ≥ 2.

The proof uses homotopical localization with respect to the map from
BZ/p to a point, where p is any prime, together with Miller’s famous
proof of the Sullivan conjecture. Alternatively, it follows from a result
in [C. A. McGibbon and J. A. Neisendorfer, On the homotopy groups of
a finite-dimensional space, Comment. Math. Helv. 59 (1984), 253–257],
which relies on a similar line of argument. Thus, it is not surprising
that our question has implications around Serre’s theorem about the
higher homotopy groups of 1-connected finite CW-complexes. Now let
us be optimistic and state the following.

Conjecture 19.1. If X is a finite CW-complex that is a Postnikov
piece, then X is a K(G, 1).
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By the theorem mentioned above, if X is a finite CW-complex that is
a Postnikov piece, then the higher homotopy groups of X are Q-vector
spaces. Hence, it seems that the fate of this conjecture will depend
on our ability to find finite CW-complexes whose higher homotopy
groups are nonzero Q-vector spaces. Do you know any? It would be
very exciting to generalize Serre’s old theorem along these lines, if the
conjecture were true. So far we can only report that the conjecture
holds (rather easily) if the dimension of X is less than or equal to 3.

We are very pleased to include this problem in your gift book, since it
is much related to a number of topics that we learnt from your beautiful
monograph with Peter Hilton and Joe Roitberg many years ago.

We wish you all the best, most sincerely, on your retirement.

carles.casacuberta@ub.edu

mcastellet@crm.cat
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20. Natàlia Castellana, Juan A. Crespo and Jérôme Scherer
Cohomological finiteness conditions: spaces versus

H-spaces

We wish to ask a very naive and classically flavored question. Con-
sider a finite complex X and an integer n. Does its n-connected cover
X〈n〉 satisfy any cohomological finiteness property? When X is an
H-space we have an answer.

Theorem 20.1. Let X be a finite H-space and n an integer. Then
H∗(X〈n〉;Fp) is finitely generated as an algebra over the Steenrod al-
gebra.

This leads naturally to ask whether the same statement holds for
arbitrary spaces.

Question 20.2. Let X be a finite space and n an integer. Is it true
that H∗(X〈n〉;Fp) is finitely generated as an algebra over the Steenrod
algebra?

Because the “difference” between a finite complex and its n-connected
cover is a finite Postnikov piece, a first step towards a solution to this
question would be to understand the cohomological finiteness proper-
ties of finite type Postnikov pieces.

Question 20.3. Is the cohomology of a finite type Postnikov piece
finitely generated as an algebra over the Steenrod algebra?

Again, we know the answer is yes if the Postnikov piece is an H-
space. The proof of Theorem 20.1 is based on the analysis of the
Eilenberg-Moore spectral sequence, and the following algebraic result,
whose proof relies deeply on the Borel-Hopf structure theorem for Hopf
algebras.

Theorem 20.4. Let A be an unstable Hopf algebra which is finitely
generated as an algebra over the Steenrod algebra. Then so is any
unstable Hopf subalgebra B ⊂ A.

For plain unstable algebras, this is false, as pointed out to us by
Hans-Werner Henn. Consider indeed the unstable algebra

H∗(CP∞ × S2;Fp) ∼= Fp[x]⊗ E(y)

where both x and y have degree 2. Take the ideal generated by y, and
add 1 to turn it into an unstable subalgebra. Since y2 = 0, this is

isomorphic, as an unstable algebra, to Fp ⊕ Σ2Fp ⊕ Σ2H̃∗(CP∞;Fp),
which is not finitely generated. Theorem 20.4 is the only result where
we fully understand the general situation!

From where do these questions come from? The condition that
H∗(X;Fp) is finitely generated as an algebra over the Steenrod algebra
is equivalent to the fact that the unstable module of indecomposable
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elements QH∗(X;Fp) is finitely generated as module over the Steenrod
algebra. This guarantees that QH∗(X;Fp) lives in the Krull filtration
of the category U of unstable modules, which was introduced by Lionel
Schwartz. An unstable module M lives in Un if and only if T̄ n+1M = 0,
where T̄ denotes Lannes’ reduced T functor. This algebraic filtration
can be compared with Bousfield’s nullification filtration with respect
to BZ/p.

Theorem 20.5. Let X be a connected H-space such that TVH
∗(X) is

of finite type for any elementary abelian p-group V . Then QH∗(X) is
in Un if and only if Ωn+1X is BZ/p-local.

Bill Dwyer and Clarence Wilkerson have shown that the case n = 0
holds for arbitrary spaces. However, our methods rely so deeply on the
H-structure that we still don’t know if one should look for a positive
or negative answer to our last question.

Question 20.6. Let X be a connected space such that TVH
∗(X) is of

finite type for any elementary abelian p-group V , and let n ≥ 1. Is it
true that QH∗(X) is in Un if and only if Ωn+1X is BZ/p-local?
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21. Ruth Charney and Karen Vogtmann
Automorphism groups of right-angled Artin groups

Dear Guido,
We have been thinking lately about outer automorphism groups of

right-angled Artin groups (“RAAGs”). Since Fn and Zn are exam-
ples of RAAGs, it is tempting to view outer automorphism groups of
general right-angled Artin groups as interpolating between Out(Fn)
and GL(n, Z), and to ask to what extent properties common to both
Out(Fn) and GL(n, Z) are true in general.

Recall that a RAAG AΓ based on a simplicial graph Γ is generated by
the vertices of Γ, and the only relations are that v commutes with w if v
and w are joined by an edge of Γ. Laurence [L] gave a set of generators
for Aut(AΓ), but not much else is known about this group except in the
cases when Γ is discrete (so AΓ is free) and Γ is the complete graph (so
AΓ is free abelian). Laurence’s generators are of four types: (1) inner
automorphisms, (2) symmetries of Γ and inversions of the generators v,
(3) partial conjugations, which conjugate everything in some connected
component of Γ−st(v) by v, and (4) transvections, which multiply v by
w (on the right or left) if lk(v) ⊆ st(w). Thus every automorphism of
AΓ lifts to an automorphism of the free group on the vertices of Γ, but
the natural map from Out(AΓ) to GL(n, Z) is not usually surjective.

There is a CAT(0) cube complex associated to any RAAG, whose 1-
skeleton is the Cayley graph of the group, and which has a k-dimensional
cube whenever the 1-skeleton of the cube appears (kind of a “cube-flag”
complex). The RAAG acts freely on this; the quotient has a loop for
each generator and a k-torus for each complete subgraph on k vertices
in Γ. This cube complex is 2-dimensional if and only if the graph Γ
has no triangles. In this case, we have constructed an “outer space”
for Out(AΓ), which is a contractible space on which Out(AΓ) acts with
finite stabilizers. Points in this outer space are morally actions of AΓ

on 2-dimensional CAT(0) complexes, though the actual description is
in terms of products of trees. This outer space is finite-dimensional,
and we obtain

Theorem 21.1. If Γ is connected and triangle-free, then Out(AΓ) con-
tains a torsion-free subgroup of finite index and it has finite virtual
cohomological dimension.

Although our outer space is finite-dimensional, its dimension is quite
large, and is unlikely to be the actual virtual cohomological dimension,
so we ask

Question 21.2. What is the exact virtual cohomological dimension of
the outer automorphism group of a 2-dimensional right-angled Artin
group?



GUIDO’S BOOK OF CONJECTURES 49

The no-triangles condition on Γ was very convenient, but of course
we would like to know what happens for any Γ:

Question 21.3. Do the outer automorphism groups of all right-angled
Artin groups have torsion-free subgroups of finite index?

Question 21.4. Calculate the virtual cohomological dimension of the
automorphism group of any right-angled Artin group.

Best wishes on your retirement,
Ruth and Karen

References
[L] M. Laurence, A generating set for the automorphism group of a

graph group, J. London Math. Soc. (2) 52 (1995), 318–334.
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22. Yuqing Chen
Planar 2-cocycles of finite groups

LetG be a finite group andA aG-module. Recall that a (normalized)
2-cocycle of G with coefficients in A is a function

f : G×G→ A

satisfying

(i) f(g, 1) = f(1, g) = 0, for all g ∈ G;
(ii) f(g, h) + f(gh, k) = gf(h, k) + f(g, hk) for all g, h, k ∈ G.

Definition 22.1. A 2-cocycle of G with coefficients in A is called
planar (the extension group acts on a finite projective plane as a
collineation group) if

(i) |G| = |A|;
(ii) for every 1 6= g ∈ G, the maps

f(g, ) : G→ A

and
f( , g) : G→ A

are bijections.

Example 22.2. Let F be a finite field. We can regard F as a trivial
F-module. For any Galois automorphism σ, we define fσ : F× F → F
by

fσ(x, y) = xσ(y).

The function fσ is a planar 2-cocycle of the additive group of F with
coefficients in the same group.

Conjecture 22.3. If G has a planar 2-cocycle, then G is a p-group.

Conjecture 22.4. (Stronger version) If G has a planar 2-cocycle with
coefficients in a G-module A, then G and A are elementary abelian
groups.
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23. Fred Cohen and Ran Levi
The homotopy exponent conjecture for p-completed

classifying spaces of finite groups

Conjecture 23.1. Let π be a finite group, and let Bπ∧p denote its p-
completed classifying space. Then the homotopy groups of Bπ∧p have
a bounded exponent, i.e., there exists an integer r ( depending on π )
such that

pr · π∗((Bπ)∧p )) = {0}.

Since π is finite, the fundamental group of Bπ∧p is the finite p-group
given by the quotient of G by its minimal normal subgroup of p-power
index, denoted by Op(π). If the order of Op(π) is not divisible by p,
then Bπ∧p is homotopy equivalent to B(π/Op(π)), and the conjecture
reduces to a triviality. If p divides the order of Op(π), then Bπ∧p has
infinitely many nonvanishing homotopy groups, all of which are finite
p-groups. It is therefore natural to ask whether there is an upper bound
on the exponent of these homotopy groups.

A particular case of the Moore finite exponent conjecture is the state-
ment that if X is a finite simply-connected CW complex whose homo-
topy groups are all finite, then π∗(X) has an exponent. One can show
that if π is a finite group, then the component of the constant loop in
ΩBπ∧p is a retract of the loop space of a finite simply-connected torsion
complex. Therefore our conjecture would follow at once if the much
stronger Moore conjecture were true.

For any finite group π, πi(Bπ
∧
p ) ∼= πi(BO

p(π)∧p ) for all i ≥ 2. Fur-
thermore, for each i ≥ 3 πi(Bπ

∧
p ) ∼= πi(BU

p(π)∧p ), where Up(π) is the
p-universal central extension of Op(π). In all known examples for the
conjecture, the order of the Sylow p-subgroup of Up(π) is an upper
bound for the order of torsion in π∗(Bπ

∧
p ). There are examples where

this bound is sharp.

It is known that for any finite group π, the p-torsion in the homology
of the loop space Ω(Bπ)∧p is bounded above by the order of the Sylow
p-subgroup of Op(π).

Example 23.2. Some examples are known. A few are given by

π = A5, A6, A7, J4,M11

at p = 2. A few more at the prime 2 are given by those finite sim-
ple groups of 2-rank 2 (including M11) with the possible exception of
U(3,F4). The finite simple groups of classical Lie type over the field
Fq, where q is a the power of a prime different from p provide a large
family of examples at the prime p.
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Finite simple groups of Lie type at the defining characteristic:
Almost no examples are known of the behavior of πi(BG(Fpk)∧p ), where
G is a finite simple groups of Lie type.

Finite groups with Abelian Sylow p-subgroups: For a finite
group π with cyclic Sylow p-subgroup and p > 2, Bπ∧p is known to have
a homotopy exponent. Furthermore, the best possible upper bound for
this exponent is given by the order of the Sylow p-subgroup. On the
other hand, for a finite group π with an abelian Sylow p-subgroup of
rank larger than 1 neither one of the above statements is known to
hold.

Alternating groups: Further natural open cases are An with n > 7
at the prime 2, and at all primes p in the cases where the Sylow p-
subgroup is not cyclic.

The examples mentioned above are obtained by considering the struc-
ture of the loop space of (Bπ)∧p . This space sometimes admits a non-
trivial product decomposition or is finitely resolvable by fibrations in-
volving more recognizable spaces, which are known to have homotopy
exponents by the work of Cohen-Moore-Neisendorfer.

A survey of many of the known results on spaces of type Bπ∧p for π
finite, including examples of homotopy exponents, is the paper (Fred
Cohen and Ran Levi; On the homotopy theory of p-completed classi-
fying spaces; Group representations: cohomology, group actions and
topology (Seattle, WA, 1996), 157–182, Proc. Sympos. Pure Math.,
63, Amer. Math. Soc., Providence, RI, 1998.)

Guido, we wish you all the best on your retirement from ETH.

Fred and Ran
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24. Jim Davis
Isomorphism conjectures for the mapping class group

Dear Guido,

I enjoyed your lecture in Münster where you showed that Teichmüller
space was a classifying space for actions of the mapping class group
whose isotropy groups are all finite. I will pose a question and then
remind you of one I posed at that time.

Let Σg be a closed surface of genus g, let Γg be its mapping class
group, and τg ∼= R6g−6 its Teichmüller space.

Question 1 (Borel Conjecture): Let Γ be a torsion free subgroup
of the mapping class group, for example the Torelli group. Is the
action of Γ on τg topologically rigid? That is, is any proper homotopy
equivalence h : M → τg/Γ, which is a homeomorphism outside of a
compact set, properly homotopic to a homeomorphism.

Question 2: (Isomorphism conjecture injectivity) Is there an con-
tractible compactification of Teichmüller space which is small at in-
finity and equivariant with respect to the action of the mapping class
group?

Discussion: A solution to Question 1 would likely involve carrying
out the program of Farrell-Jones in the mapping class group case. The
terms in Question 2 are defined in the thesis of David Rosenthal. A
positive solution to Question 2 would likely lead to a proof of the in-
jectivity map of the assembly map in K- and L-theory with respect to
the family of finite subgroups, and thereby a new proof of the Novikov
conjecture in this case. (It seems that the Novikov conjecture in the
mapping class group case has been recently proved by Ursula Hamen-
staedt.)

Best of luck in all your endeavors, mathematically and otherwise,

Jim
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25. Michael W. Davis
The Hopf Conjecture and the Singer Conjecture

Dear Guido,

As you know, I have been thinking about the following question for
a long time.

Conjecture 25.1. Suppose M2k is a closed, aspherical manifold of
dimension 2k. Then (−1)kχ(M2k) ≥ 0.

The conjecture is true in dimension 2 since the only surfaces which
have positive Euler characteristic are S2 and RP 2 and they are the
only two which are not aspherical. In the special case where M2k is
a nonpositively curved Riemannian manifold this conjecture is usually
attributed to Hopf by topologists and either to Chern or to both Chern
and Hopf by differential geometers.

When I first heard about this conjecture in 1981, I thought I could
come up with a counterexample by using right–angled Coxeter groups.
Given a finite simplicial complex L which is a flag complex, there is
an associated right-angled Coxeter group W . Its Euler characteristic
is given by the formula

(1) χ(W ) = 1 +
dim L∑
i=0

(
1

2

)i+1

fi,

where fi denotes the number of i-simplices in L. If L is a triangula-
tion of Sn−1, then W acts properly and cocompactly on a contractible
n-manifold. The quotient of this contractible manifold by any finite
index, torsion-free subgroup Γ ⊂ W is a closed aspherical n-manifold
Mn. Since χ(Mn) is a positive multiple of χ(W ) (by [W : Γ]), they
have the same sign. So, this looked like a good way to come up with
counterexamples to 25.1. On the other hand, if you believe Conjecture
1.1, then you must also believe the following.

Conjecture 25.2. If L is any flag triangulation of S2k−1, then

(−1)kκ(L) ≥ 0,

where κ(L) is the quantity defined by the right hand side of (1).

Ruth Charney and I published this conjecture (Pac. J. Math. 171
(1995), 117-137). It is sometimes called the Charney–Davis Conjecture.

In the 1970’s Atiyah introduced L2 methods into topology. If a
discrete group Γ acts properly and cocompactly on a smooth manifold
or CW complex Y , then one can define the reduced L2-cohomology
spaces of Y and their “dimensions” with respect to Γ, the so-called
“L2-Betti numbers.” Let L2bi(Y ; Γ) be the Γ-dimension of the L2-
cohomology of Y in dimension i. It is a nonnegative real number. If
Y → X is a regular covering of a finite CW complex X with group of
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deck transformations Γ, the Euler characteristic of X can be calculated
from the L2-Betti numbers of Y by the formula:

(2) χ(X) =
∑

(−1)iL2bi(Y ; Γ).

Shortly after Atiyah described this formula, Dodziuk and Singer real-
ized that there is a conjecture about L2-Betti numbers which is stronger
than 25.1. It is usually called the Singer Conjecture. Beno Eckmann
also discusses it in his note to you.

Conjecture 25.3. Suppose Mn is an aspherical manifold with funda-

mental group π and universal cover M̃n. Then L2bi(M̃
n; π) = 0 for

all i 6= n
2
. (In particular, when n is odd this means all its L2-Betti

numbers vanish.)

This implies Conjecture 25.1 since, when n = 2k, formula (2) gives:

(−1)kχ(M2k) = L2bk(M̃
2k; π) ≥ 0.

Of course, there is also the following version of 25.3 for Coxeter
groups.

Conjecture 25.4. Suppose that L is a triangulation of Sn−1 as a flag
complex, that W is the associated right–angled Coxeter group and that
Σ is the contractible n-manifold on which W acts. Then L2bi(Σ;W ) =
0 for all i 6= n

2
.

Boris Okun and I discussed this conjecture in a paper (Geometry &
Topology 5 (2001), 7–74) and we proved it for n ≤ 4. The result for
n = 4 implies Conjecture 25.2 when L is a flag triangulation of S3.
So, Conjecture 25.2 is true in the first dimension for which it is not
obvious.

Have a great retirement,
Mike
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26. Johan Dupont and Walter Neumann
Rigidity and realizability for H3(PSL(2,C)δ; Z)

Conjecture 26.1. (Rigidity Conjecture for H3(PSL(2,C)δ; Z)):
H3(PSL(2,C)δ; Z) is countable (the δ means discrete topology).

This conjecture36 is equivalent to the conjecture that the map

H3(PSL(2,Q)δ; Z)→ H3(PSL(2,C)δ; Z)

is an an isomorphism. It is also equivalent to the corresponding rigidity
conjecture for Kind

3 (C), which has been formulated in greater generality
by Suslin, and it is implied by some much more far-reaching conjec-
tures of Ramakrishnan in algebraic K-theory, and of Zagier in number
theory. It is thus a little drop in a big bucket. However, the latter
conjectures seem currently unapproachable, so this drop is worth pur-
suing. Moreover, it has beautiful geometry attached, so it represents a
combination very appropriate to our honoree, Guido Mislin.

One aspect of the geometry is scissors congruence. The “Dehn-Sydler
theorem” gave closure to Hilbert’s 3rd problem by showing that volume
vol(P ) and Dehn invariant δ(P ) determine the scissors congruence class
of an Euclidean polytope P . Here, δ(P ) ∈ R ⊗Q R/πQ is defined as
the sum of (length)⊗(dihedral angle) over the edges of P .

The corresponding result for polytopes in H3 or S3 remains conjec-
tural. If, for X = H3 or S3, we denote by D(X) the kernel of Dehn
invariant δ on the Grothendieck group of X–polytopes modulo scissors
congruence, then asking if vol and δ classify X–polytopes up to scissors
congruence becomes the question whether

vol : D(X)→ R

is injective. This map has countable image, so its injectivity would
imply countability of D(X). On the other hand, there is a natural
isomorphism:

H3(PSL(2,C)δ) ∼= D(S3)/Z⊕D(H3) (∗)

So countability of both D(H3) and D(S3) is equivalent to Conjecture
26.1. In fact, countability of either one suffices. (In particular truth
of the “Dehn-Sydler theorem” for H3–scissors congruence would imply
Conjecture 26.1. But this is injectivity of vol : D(H3) → R, which
seems currently no more approachable than Zagier’s conjecture, which
wildly generalized it.)

36We do not have space for detailed references in the following discussion, which
collates work of Bloch, Bökstedt, Brun, Parry, Sah, Suslin, Wigner, Yang, ourselves,
and others. For more details see Dupont’s book “Scissors Congruences, Group
Homology, and Characteristic Classes” (World Scientific 2001) or Neumann’s survey
“Hilbert’s 3rd problem and invariants of 3-manifolds” in “The Epstein Birthday
Schrift” (Geometry and Topology Monographs 1, 1998).
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˜
Any compact hyperbolic 3-manifold M = H3/Γ has a “fundamental

class” β(M) ∈ H3(PSL(2,C)δ; Z): the image of the fundamental class
[M ] ∈ H3(M) = H3(Γ) under the map induced by the inclusion Γ →
Isom(H3) = PSL(2,C). The image of β(M) in D(H3) for the above
splitting (∗) is just the scissors congruence class of M , but the image in
D(S3)/Z is more mysterious. It is orientation sensitive and its volume
gives the Chern-Simons invariant of M .

The class β(M) is defined more generally for any finite volume M =
H3/Γ (using a natural splitting H3(PSL(2,C)δ, P ) ∼= H3(PSL(2,C)δ)⊕
H2(P ) where P is the parabolic subgroup), and lies in H3(PSL(2,Q)δ).

The validity of the following rather wild conjecture would clearly
imply Rigidity Conjecture 26.1.

Conjecture 26.2. (Realizability Conjecture): H3(PSL(2,C)δ is gen-
erated by fundamental classes of hyperbolic 3-manifolds.

The torsion ofH3(PSL(2,C)δ) is Q/Z (it is in the summandD(S3)/Z,
where is generated by lens spaces), while H3(PSL(2,C)δ)/Torsion is,
amazingly, a Q–vector-space (of infinite dimension). So a slightly less
wild version of Conjecture 26.2 is

Conjecture 26.3. (Realizability over Q): H3(PSL(2,C)δ)/Torsion is
generated over Q by fundamental classes of hyperbolic 3-manifolds.

Neither version is likely to be useful for Conjecture 26.1: — each is
equivalent to the same conjecture restricted toH3(PSL(2,Q)δ) together
with Conjecture 26.1, which look like rather independent conjectures.

There is no strong evidence for Conjecture 26.2 or the weaker 26.3.
The only justification for going out so far on a limb is that the conjec-
ture is enticing, and there is some very weak experimental evidence for
the H3(PSL(2,Q)δ) version of the conjecture (and the Rigidity Conjec-
ture is widely believed). One could formulate the conjecture just for
the first summand in (∗) — scissors congruence — but computational
evidence suggests that this is no more or less likely to be true than the
full conjecture.
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27. Beno Eckmann
Conjecture or question?

If the answer to the following problem is YES then it is a conjecture;
if it is NO then it is a question. We suggest that the problem be solved
immediately after June 26, 2006.

Here is the problem. If M is a closed aspherical Riemannian mani-
fold, are the `2-Betti numbers of its universal covering M̃ all = 0 except
possibly for the middle dimension? If M has non-positive curvature the
problem is known as the Singer conjecture (answer not known).

[Some remarks about ”aspherical”: It has the following equivalent
meanings

1) All homotopy groups in dimensions > 1 are = 0.
2) All homology groups of M̃ are = 0.
3) M̃ is contractible.
It is a fact known long ago that if M has non-positive sectional

curvature then it is aspherical.]
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28. Emmanuel Dror Farjoun
Nine Problems about (co-)Localizations

To Guido, a guide and a friend.

Introduction

In the forgoing we denote by X, Y etc. either groups or pointed
spaces, assuming them to be either CW-complexes or simplicial set
satisfying the usual Kan conditions when needed. It is well-known
that a map φ : X → Y has the form X → LfY of the canonical co-
augmentation map for some localization functor Lf if and only if it
induces an equivalence of mapping objects: (i.e. sets of maps with the
appropriate extra structure on them.)

map∗(Y, Y )→ map∗(X, Y ).

Such a map φ will be called here a localization map. The notationmap∗
denotes either the set of all group-maps or the space of all pointed maps.

Similarly, a map ψ : V → W is called cellular if it is of the form of the
canonical augmentation map for the cellularization functor in the rele-
vant category: cellAW → W. It is not hard to see that a map is cellular
if and only if it induces an equivalence map∗(V, V )→ map∗(V,W ). In
that case V = cellAW is equivalent to cellV W.

Given the above concepts, most of the following problems-conjectures
are elementary in their formulations. But some have proven surpris-
ingly difficult to confirm or negate. I will not dwell here on their impli-
cations, the problems seem sufficiently simple minded and attractive
as they stand. Most of them can be generalized in various ways, to
yield statements in other categories. Some progress and results of sim-
ilar nature on these and related problems is indicated in the references
cited below. On the basis of special cases, one may expect a positive
answers for these questions, maybe under mild additional assumptions,
save maybe questions number 3. and 4.

Nine open problems

Problem 1. Prove that any localization P → LfP of a finite p-group
P is a surjective map, in particular the localization is a finite p-group.
This is known for groups of nilpotent class 3, by a result of M. As-
chbacher.

Problem 2. More generally any localization Lf N of a nilpotent group
is a nilpotent group.

Problem 3. Is it true that for any map f and any A the composite
functors cellA ◦ Lf and Lf ◦ cellA are idempotent functors?

Problem 4. The localization or cellularization of a principal fibration
sequence G → E → B, with a connected fibre G, is a principal fibra-
tion sequence. In general the fibration is not preserved, however, its



GUIDO’S BOOK OF CONJECTURES 63

principal nature is supposed to be preserved under mild restrictions.
If true this would be in line with the well-known Bousfield-Kan fibre
lemma about R∞ where the fibration is actually preserved and with
the observation that it hold for the Postnikov section and n-connected
cover functors. For localizations, connectivity of the fibre is an essential
condition.

Problem 5. The localization of any 1-connected space is 1-connected.

A weaker version: A universal covering projection X̃ → X is a local-
ization map only if is it an equivalence, namely, X is 1-connected.

Problem 6. Any localization of a polyGEM is a polyGEM. The local-
ization of an n-connected Postnikov stage is an n-connected Postnikov
stage.

Problem 7. A version of problem 3. Suppose X = cellAM where M
is an f -local space, for some f,— say a K(π, 1). Then X ∼= cellALf X.
This is true in several special cases, say for finitely generated abelian
groups.

Problem 8. Any localization and cellularization of a space X all whose
homotopy groups are p-torsion is also such a space.

Problem 9. The cellularization of a finite Postnikov stage with finite
homotopy groups, is a space whose homotopy groups are finite groups.
This is true in the category of groups, for finite groups. But is not clear
even for a K(π, 1) with π a finite group.
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29. Zig Fiedorowicz
The Smith Filtration on the Universal Principal Bundle

of a Coxeter Group

Definition 29.1. If G is any discrete group, let EG denote the stan-
dard construction of a universal principal G-bundle. That is, EG is the
geometric realization of the simplicial set E∗G whose set of k-simplices
is Gk+1, with faces given by deletion of coordinates and degeneracies
given by repetition of coordinates and with G acting diagonally on the
coordinates.

In his 1981 thesis, J. Smith constructed a natural filtration on the
universal principal bundle EΣn of the symmetric group Σn as follows.
For each m ≥ 1, let F (m)E∗Σn denote the simplicial subset of E∗Σn

consisting of those simplices (g0, g1, . . . , gk), where for each pair 1 ≤
i < j ≤ n, the number of times the pair gets reversed by the sequence
of permutations g0g

−1
1 , g1g

−1
2 , . . . gk−1g

−1
k is at most m − 1 times. Let

F (m)EΣn denote the geometric realization of this simplicial set. Smith
conjectured the following result, which was later proved by C. Berger.

Theorem 29.2. F (m)EΣn has the homotopy type of the configuration
space of n-tuples of distinct points in Rmn.

This result can be reformulated in the context of Coxeter groups as
follows. Let G be a finite Coxeter group generated by a collection of
hyperplanes {Hi} in Rn. Then we can define the Smith filtration on
E∗G by counting the number of times a generic point in Rn gets flipped
around any one of the generating hyperplanes by the sequence g0g

−1
1 ,

g1g
−1
2 , . . . gk−1g

−1
k corresponding to a k-simplex (g0, g1, . . . , gk).

A natural generalization of the above result seems to be

Conjecture 29.3. F (m)EG has the homotopy type of the complement
of ∪iHi ⊗ Rm in Rmn.

Moreover a considerable portion of Berger’s proof carries through in
this context. Berger’s proof consists of constructing a certain poset and
then decomposing the configuration space as a colimit of contractible
subspaces indexed by this poset. He then shows that on the one hand
the colimit has the same homotopy type as the homotopy colimit, and
thus the same homotopy type as the nerve of the poset. On the other
hand, he shows by a Quillen Theorem A argument that the nerve of
the poset has the same homotopy type as F (m)EΣn. Berger’s poset
has a natural interpretation in the Coxeter context. However there are
certain technical difficulties in carrying out the complete proof.

It may also be the case that there are further generalizations possible
for more general classes of reflection groups.
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30. Eric M. Friedlander
The Friedlander-Milnor Conjecture

To my good friend, Guido Mislin

The conjecture of the title of this note has resisted 40 years of effort
and remains not only unsolved but also lacking in a plausible means of
either proof or counter-example.

The original form of this conjecture is one I struggled with during
my days at Princeton in the early 1970’s:

Conjecture 30.1. Let G(C) be a complex reductive algebraic group and
let G(C)δ denote this group viewed as a discrete group. Then the map
on classifying spaces of the continuous (identity) group homomorphism

i : G(C)δ → G(C)

induces an isomorphism in cohomology with finite coefficients Z/n for
any n ≥ 0:

i∗ : H∗(BG(C),Z/n)
i∗' H∗(G(C)δ,Z/n).

Conjecture 30.1 is easily seen to be true for a torus (i.e., G = G×r
m for

some r > 0), but even the simplest non-trivial case (that of G = SL2)
remains inaccessible.

Guido and I published 5 papers together, all in some sense connected
with this conjecture. We used the integral form GZ of a complex re-
ductive algebraic group (which is a group scheme over Spec Z) in order
to form the group G(F ) of points of G with values in a field F . Most of
our joint work investigated various relations between G(C) and G(F ),
the case F = Fp (the algebraic closure of a prime field Fp) being of
special interest.

One knows from considerations of etale cohomology that the coho-
mology of BG(C) with Z/n coefficients is naturally isomorphic to that
of the etale homotopy classifying space of the algebraic group GF for
F algebraically closed of characteristic p ≥ 0:

H∗(BG(C),Z/n) ' H∗((BG)et,Z/n), provided that (p, n) = 1.

This enables one to construct a mapH∗(BG(C),Z/n) → H∗(G(F ),Z/n)
relating the cohomology with mod-n coefficients of the classifying space
of G(C) with the cohomology with mod-n coefficients of the discrete
group G(F ) for any field F .

The following is a generalization of Conjecture 30.1, one that appears
likely to be true if and only if Conjecture 30.1 is valid.

Conjecture 30.2. Let G(C) be a complex reductive algebraic group,
let n > 0 be a positive integer, and let p denote either 0 or a prime
which does not divide n. Then for any algebraically closed field F of
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characteristic p, the comparison of the cohomology of BG(C) and G(F )
determines an isomorphism

i∗ : H∗(G(F ),Z/n) ' H∗(BG,Z/n).

In our first paper together (1), Guido and I began our investigation
of “locally finite approximations” of Lie groups. We also formulated
the following conjecture and proved it equivalent to Conjecture 30.2.

Conjecture 30.3. Let F be an algebraically closed field of character-
istic p ≥ 0 and let n > 0 be a positive integer not divisible by p if
p > 0. Then Conjecture 30.2 is valid for G(F ) if and only for every
0 6= x ∈ H∗(G(F ),Z/n), there exists some finite subgroup π ⊂ G(F )
such that x restricts non-trivially to H∗(π,Z/n).

The most familiar form of the “Friedlander-Milnor Conjecture” is
that formulated by John Milnor in (2). In that paper, Milnor verifies
this conjecture for solvable groups.

Conjecture 30.4. Let G be a Lie group with finitely many components
and let Gδ denote the same group now viewed as a discrete group. Then
for any integer n > 0, the continuous (identity) map i : Gδ → G
induces an isomorphism on cohomology with mod-n coefficients:

i∗ : H∗(BG,Z/n)
i∗' H∗(Gδ,Z/n).

We remark that the most substantial progress to date on these con-
jectures is due to Andrei Suslin who proves a “stable” version of Con-
jectures 30.1 and 30.2 in (3).
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31. Ross Geoghegan
The fundamental group at infinity

Dear Guido: I do hope your retirement is only from receiving pay-
checks and not from mathematics. Here is a question about the fun-
damental group at infinity. Best wishes. Ross

Let G be a finitely presented group which has one end. There are
three flavors of the question: homological, homotopical, and geometric.

1. The homological flavor

Question 1: Is it true that the abelian group H2(G,ZG) is free?

Remarks 31.1.
(i) H0(G,ZG) and H1(G,ZG) are trivial.
(ii) H2(G,ZG) is either trivial, or is infinite cyclic, or is an infinitely
generated abelian group (Farrell).
(iii) Hn(G,ZG) need not be free abelian when n > 2 (Bestvina-Mess,
Davis).
(iv) H2(G,ZG) need not be free abelian when G is only finitely gener-
ated. Perhaps FP2 could replace “finitely presented” here.

2. The homotopical flavor

Let X be any (one-ended) complex on which G acts cocompactly as
a group of covering transformations.

Question 2: Is it true that the “fundamental group at infinity” of X
is semistable (aka Mittag-Leffler)?

An inverse sequence of groups {Gr} is semistable or Mittag-Leffler
if, given any n, the sequence of images of the groups Gn+k in Gn is
eventually constant. We choose a proper ray ω : [0,∞) → X and a
filtration ofX by finite subcomplexesKn. By reparametrizing ω we can
assume ω([r,∞)) ⊂ X −Kr for all r. Let Gn denote the fundamental
group of the complement of Kn based at ω(n), and let fn : Gn+1 → Gn

be induced by inclusion using change of base point along ω. Question
2 asks if this {Gr} is semistable.

Remarks 31.2.
(i) The answer only depends on G, not on X nor on the filtration nor
on the base ray; so I can rephrase the homotopical question as

Question 2a: Is G semistable at infinity?

(ii) The answer is known to be YES for many classes of groups. For
example: all of the following imply that G is semistable at infinity:
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(*) G sits in the middle of a short exact sequence of infinite groups
where the kernel is finitely generated (Mihalik).
(*) G is a one-relator group (Mihalik).
(*) G is the fundamental group of a graph of groups whose vertex
groups are finitely presented and semistable at infinity, and whose edge
groups are finitely generated (Mihalik-Tschantz).
(iii) There are positive answers coming from topology. Assume X ad-
mits a Z-set compactifying boundary. Then the answer is YES if and
only if this (connected) boundary has semistable pro-π1 in the sense of
shape theory (the technical term is “pointed 1-movable”); examples are
Coxeter groups (Davis). This π1-condition holds if the boundary is lo-
cally connected; examples are hyperbolic groups (Bowditch, Swarup).
(iv) The answer is unknown for CAT(0) groups.

The homological Question 1 is equivalent to:

Question 1a: Is it true that the inverse sequence of integral first ho-
mology groups of the spaces X −Kn is semistable?

Thus Question 1 is the abelianized version of Question 2, and is
perhaps more likely to have a positive answer.

3. The geometric flavor

Question 3: Is it true that any two proper rays in X (one-ended!)
are properly homotopic?

This is so deliciously simple and “right” that it hardly needs com-
ment 37 except to say that it is EQUIVALENT to Question 2.

Final Remark: There are lots of contractible locally finite 2-dimen-
sional complexes X whose fundamental groups at infinity are not semi-
stable; for example the infinite inverse mapping telescope S associated
with a dyadic solenoid (suitably coned off to make it contractible). The
problem is to know if any of these admit a cocompact, free and properly
discontinuous group action. We know that S does not admit such an
action (G.-Mihalik).

37I have recently finished a book “Topological Methods in Group Theory” which
contains a much more detailed account of what I summarize here.
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32. Henry Glover
Metastable embedding, 2-equivalence and generic rigidity

of flag manifolds

Guido, Here are two conjectures related to our previous work.

Conjecture 32.1. Any two 2-equivalent manifolds embed in the same
metastable dimension. I.e., let Mn and Nn be two simply connected
closed differentiable manifolds such that their 2-localizations are homo-
topy equivalent. If Mn embeds in Rn+k, k > [n/2]+2, then Nn embeds
in euclidean space of the same dimension.

See H. Glover and G. Mislin, Metastable embedding and 2-localization,
Lecture Notes in Math. 418, Springer 1974, for related work.

Conjecture 32.2. All complex flag manifolds are generically rigid.
We say that a simply connected space X is generically rigid if for all
primes p and any simply connected space Y , the p-localizations of X
and Y are homotopy equivalent implies the spaces X and Y are homo-
topy equivalent. A complex flag manifold is any space U(n)/U(n1) ×
U(n2)× ...× U(nk), with Σk

i=1ni = n.

See H. Glover and G. Mislin, On the genus of generalized flag man-
ifolds, L’Enseignement Mathématique 27 (1981), 211-219, for cases
when the conjecture is known to be correct.
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33. Rostislav I. Grigorchuk and Volodya Nekrashevych
Self-similar contracting groups

Let X be a finite set (alphabet) and let X∗ be the free monoid
generated by it. We imagine X∗ as a rooted tree with the root equal
to the empty word and a word v connected to every word of the form
vx for x ∈ X.

Definition 33.1. A self-similar group is a group G acting faithfully
on X∗ such that for every g ∈ G and x ∈ X there exist h ∈ G and
y ∈ X such that

g(xv) = yh(v)

for all v ∈ X∗.

It follows that for every g ∈ G and u ∈ X∗ there exists h ∈ G such
that

g(uv) = g(u)h(v)

for all v ∈ X∗. The element h is denoted g|v and is called restriction
of g in v.

Definition 33.2. A self-similar group G acting on X∗ is called con-
tracting if there exists a finite set N ⊂ G such that for every g ∈ G
there exists n ∈ N such that g|v ∈ N for all v ∈ X∗ of length |v| ≥ n.

Conjecture 33.3. Finitely generated contracting groups have solvable
conjugacy problem.

Conjecture 33.4. Finitely generated contracting groups have solvable
membership problem.

Remark 33.5. It is known that the word problem in contracting
groups is solvable in polynomial time.

The next three conjectures are ordered by their strength (the last is
the strongest).

Conjecture 33.6. Contracting groups have no non-abelian free sub-
groups.

Conjecture 33.7. Contracting groups are amenable.

Conjecture 33.8. A simple random walk on a contracting group has
zero entropy.

Conjecture 33.9. The group generated by the transformations a and
b of {0, 1}∗ defined by

a(0w) = 1w, a(1w) = 0a(w), b(0w) = 0b(w), b(1w) = 1a(w)

is amenable.

Remark 33.10. This group is not contracting, however it is known
(due to a result of S. Sidki 38) that this group does not contain a free

38S. Sidki, Finite automata of polynomial growth do not generate a free group,
Geom. Dedicata 108 (2004), 193–204.
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subgroup. The graphs of the action of this group on the boundary of
the tree X∗ have intermediate growth.

Conjecture 33.11. The group Hk generated by the transformations
aij of {1, 2, . . . , k}∗, for 1 ≤ i < j ≤ k, defined by

aij(iw) = jw, aij(jw) = iw, aij(kw) = kaij(w) for k 6= i, j

is non-amenable for k ≥ 4.

Remark 33.12. The group Hk models the “Hanoi tower game” on k
pegs. The graph of its action on the nth level of the tree {1, . . . , k}∗
coincides with the graph of the game with n discs39. It is also not
contracting, but its graphs of action on the boundary of the tree are of
intermediate growth. The group H3 is amenable and the graphs of the
action on the boundary have polynomial growth.

We say that a group G is Tychonoff if it has a fixed ray for any affine
action on a convex cone with compact base40. A definition of branch
groups can be found in41. Every proper quotient of a branch group is
virtually abelian.

Conjecture 33.13. Branch group G is Tychonoff iff G is indicable
and every proper non-trivial quotient is Tychonoff.

39R. Grigorchuk and Z. Šunić, Asymptotic aspects of Schreier graphs and Hanoi
Towers groups, to appear in C. R. Acad. Sci. Paris. Sér. I Math., 2006

40R. I. Grigorchuk, On Tychonoff groups, in “Geometry and cohomology in group
theory (Durham, 1994)”, 170–187, Cambridge Univ. Press, Cambridge, 1998.

41R. I. Grigorchuk, Just infinite branch groups, New Horizons in pro-p Groups
(Aner Shalev, Marcus P. F. du Sautoy, and Dan Segal, eds.), Progress in Mathe-
matics, vol. 184, Birkhäuser Verlag, Basel, 2000, pp. 121–179.
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34. Pierre de la Harpe
Piecewise isometries of hyperbolic surfaces

What does the group of piecewise isometries of a surface look like?

More precisely, let us consider compact Riemannian surfaces. Bound-
aries (if any) should be unions of finitely many geodesic segments; there
is no reason to impose connectedness or orientability. For two surfaces
M,N of this kind, a piecewise isometry from M to N is given by two
partitions M = tk

i=1Mi and N = tk
i=1Ni in polygons, and a family

gi : Mi −→ Ni of surjective isometries; two such piecewise isometries
are identified if they coincide on the interiors of the pieces of finer
polygonal partitions. When such a piecewise isometry exists, M and
N are said to be equidecomposable. Piecewise isometries of a surface M
to itself constitute the group of piecewise isometries PI(M). We want
to stress that a piecewise isometry need not be continuous. The group
PI(M) is a two–dimensional analogue of the group PI([0, 1]) of ex-
change transformations of the interval (the transformations themsleves
have been studied by Keane, Sinai, and Veech, among others, and the
group by Arnoux, Fathi, and Sah – see for example (5) and (1)).

It is well–known that two Euclidean polygons are equidecompos-
able if and only if their areas are equal (compare with Chapter IV in
Hilbert’s Grundlagen der Geometrie (7)). This carries over to polygons
in the hyperbolic plane (see (3) for a proof). It follows that any ori-
entable connected closed Riemannian surface M of genus g ≥ 2 and of
constant curvature −1 is piecewise isometric to any other, and in par-
ticular to a hyperbolic polygon of area 4π(g−1). In particular, viewed
as an abstract group, PI(M) depends on g only, and can be denoted
by PIg. There are many ways to check that it is an uncoutable group,
containing torsion of any order and containing free abelian groups of
arbitrary large ranks.

I would like to understand more of the groups PIg. For example,
are PI2 and PI3 isomorphic?

Observe that PI2 is a subgroup of PI3 in many ways (think of a
hyperbolic polygon of area 4π contained inside a hyperbolic polygon
of area 6π). The isomorphism question can be phrased more generally
for the group PI(Pt) of piecewise isometries of a hyperbolic polygon
Pt of any area t > 0.

Are these groups acyclic? Simple? Or if not with simple commutator
subgroups? (Arnoux-Fathi and Sah have defined a homomorphism
from the analogous group PI([0, 1]) onto ∧2

QR, reminiscent of the Dehn
invariant for scissors congruences, and it is known that the kernel is a
simple group; see (1)). Should they be regarded as topological groups?
If yes for which topology? (two candidates: the topology of convergence
in measure, and the weak topology discussed in (6)).
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Similar questions make sense for other groups of piecewise isometries,
for example related to polygons in a round sphere, or in a flat torus, or
related to other spaces and appropriates pieces. The case of flat tori is
usually phrased in terms of Euclidean spaces or polytopes; concerning
this case, the little I am aware of ((2), (4), (8)) is about particular
piecewise isometries and not about groups PI(M). One difficulty with
other spaces is to choose an interesting class of pieces when “polygon”
or “polytope” have no clear meaning.

A bijection of a finitely–generated group onto a subset of itself which
is given piecewise by left multiplications can be viewed as a piecewise
isometry. Bijections of this form are important ingredients in the theory
of amenable groups (Tarski characterization of non–amenability by the
existence of paradoxical decompositions, see e.g. (9)).

Piecewise isometries make sense for large classes of metric spaces,
but the corresponding groups and pseudogroups seem to have been
little explored so far in this generality. I am grateful to Pierre Arnoux
for his comments on the first version of this short Note.
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35. Hans-Werner Henn and Jean Lannes
Exotic classes in the mod 2 cohomology of GLn(Z[1

2
])

Dear Guido,

Cohomology of linear groups and characteristic classes have played
an important role in your work. That is why we hope that you will
enjoy the following problem.

Let Dn denote the subgroup of the algebraic group GLn consist-
ing of diagonal matrices; let ιn denote the inclusion of discrete groups
Dn(Z[1

2
]) ↪→ GLn(Z[1

2
]). S. Mitchell [M]42 has shown that the im-

age of the restriction map ι∗n : H∗(GLn(Z[1
2
]);F2) → H∗(Dn(Z[1

2
];F2)

is isomorphic to F2[w1, w2, . . . , wn] ⊗ Λ(e1, e3, . . . , e2n−1). Here the
wi are the Stiefel-Whitney classes of the tautological representation
GLn(Z[1

2
]) → GLn(R) and the e2i−1 are closely related to Quillen’s

odd-dimensional modular characteristic classes in the mod 2 cohomo-
logy of GLn(F3). By explicit calculation the map ι∗n is known to be
injective for n ≤ 3 ([M] for n = 2 and [H1]43 for n = 3). Work of
Dwyer [D]44 shows that ι∗n fails to be injective if n ≥ 32 and still unpu-
blished work of ours [HL] - which will hopefully see the light of the day
sometime soon - shows that it already fails if n ≥ 14. However, the
reasoning in [D] as well as in [HL] is very indirect and does not produce
any explicit elements in the kernel of ι∗n. On the other hand one of us
has shown45 that the kernel of ι∗n becomes very large as n grows.

Problem. Construct explicit elements in the kernel of ι∗n.

Comments.

1) Injectivity of ι∗n amounts to the validity of an unstable Lichten-
baum-Quillen conjecture for Z[1

2
] at the prime 2 (cf. [D]) so any (even

partial) answer to the question would shed more light on why such an
unstable conjecture fails.

2) The solution of the Milnor conjecture by Voevodsky led to the
proof that the map ι∗∞ (ι∞ being the colimit of the ιn) is injective: in
other words, the stable Lichtenbaum-Quillen conjecture for Z[1

2
] at the

prime 2 holds.

42[M] S. Michell, On the plus construction for BGL(Z[ 12 ]), Math.Zeit. 209
(1992), 205-222

43[H1], H.-W. Henn, The cohomology of SL(3,Z[ 12 ]), K-Theory 16 (1999), 299-
359

44[D] W. Dwyer, Exotic Cohomology for GLn(Z[ 12 ]), Proc. Amer. Math. Soc.
126 (1998), 2159-2167

45[H2], H.-W. Henn, Commutative algebra of unstable K - modules, Lannes’
T -functor and equivariant mod-p cohomology, Crelles Journal für die reine und
angewandte Mathematik 478 (1996), 189-215
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3) Now let us come back to the ghost reference [HL]. Let On be
the subgroup of GLn consisting of orthogonal matrices (orthogonal for
the euclidian metric) and ρn be the homomorphism of discrete groups
On(Z[1

2
]) → On(F3) induced by mod 3 reduction. The reasoning in

[HL] is as follows: first we show that if ι∗n is injective then ρ∗n is bijective
and afterwards we prove that ρ∗n is not bijective for n ≥ 15.

Question. Is ρ∗∞ bijective?

A positive answer to this question amouts to the validity of an “or-
thogonal Lichtenbaum-Quillen conjecture for Z[1

2
] at the prime 2.”

Best wishes,

Hans-Werner and Jean
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36. Peter Hilton
A conjecture on complete symbols

Dear Guido,
I do not have any exciting conjectures in homotopy theory at my dis-

posal, so I offer you this conjecture in number theory, with my warmest
good wishes to you for a happy and creative retirement.

Affectionately, Peter

A conjecture on complete symbols
Given positive integers b, a, odd, a < b

2
, gcd(a, b) = 1, we construct

a coach

(3) b

∣∣∣∣a1a2 · · · ar

k1k2 · · · kr

∣∣∣∣ , a1 = a,

where b − ai = 2kiai+1, with ki maximal positive, i = 1, 2, . . . , r,

ar+1 = a1. It is then known that, if k =
∑

i

ki, k is the quasi-order of

2 mod b, that is, k is the smallest positive integer such that 2k ≡ ±1
mod b. In fact, 2k ≡ (−1)r mod b.

It is easy to see that, if S is the set of all positive integers satisfying
the conditions on a above, then ai ∈ S, 1 ≤ i ≤ r. It is possible that
(1) exhausts the set of integers ai belonging to S. If not we may, of
course, construct further coaches based on b. For example, with b = 65,
there are 4 coaches

(4) 65

∣∣∣∣16
∣∣∣∣ 3 31 17
1 1 4

∣∣∣∣7 29 9
1 2 3

∣∣∣∣11 27 19 23 21
1 1 1 1 2

∣∣∣∣ ,
forming what we call the complete symbol for b = 65. We write c = c(b)
for the number of coaches in a complete symbol.

We conjecture that it should be possible to determine if a complete
symbol has only one coach without having to construct the coach and
without having to determine the quasi-order of 2 mod b.

Remark 36.1. In fact, we know that Φ(b) = 2ck, where Φ is the Euler
totient function. Thus c = 1 if, and only if, k = 1

2
Φ(b).
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37. John Hubbuck
A “dual” Dickson algebra

Let V be a finite dimensional vector space over a finite field. The ring
of invariants of the polynomial algebra on V under the action of the
general linear group GL(V ) is the well known Dickson algebra. With
the standard gradings, the algebra structure of the Hopf algebra that is
dual to the polynomial Hopf algebra is the divided polynomial algebra
on the dual of V and again GL(V ) acts.

Question 37.1. What is the ring of invariants?

It is well known that the Dickson algebra is not a sub-Hopf algebra
of the polynomial Hopf algebra.

My student David Salisbury has just finished his PhD thesis writing
mainly on this topic, but progress has been limited and is very com-
putational. In particular, the ring structure of the invariants seems
indescribable without computer printouts. Classical invariant theory
approaches appear to fail completely, usually because of the absence of
finite generation and we need something new.

John Hubbuck
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38. Tadeusz Januszkiewicz
Simplical nonpositive curvature

Dear Guido, EG spaces that interested you for a long time often
arise from geometric considerations. A prime example is the following
situation: Let X be a proper CAT (0) geodesic metric space, and let G
be a properly discontinous isometric action. Then X is EG. To see
this one 1. proves a fixed point theorem for finite group actions on
CAT (0) spaces, 2. proves convexity properties, hence contractibility
of fixed point sets.

Recently Jacek Świa̧tkowski and I 46, studied a combinatorial analog
of nonpositive curvature. Our motivation came from cube complexes
which provide one of the richest sources of high dimensional CAT(0)
spaces. Here CAT(0) condition on the geodesic metric for which every
cube is a standard euclidean cube can be stated as a simple, check-
able, combinatorial property of links: they should be flag simplicial
complexes.

Then one tries to do the same for simplicial complexes. A condition
equivalent to CAT(0) property of the geodesic metric for which every
simplex is a standard equilateral euclidean simplex is unknown (and
finding it is probably hard). However there is a simple condition we
call systolicity, which implies many consequences of CAT(0), without
actually implying it (and there are non-systolic triangulations for which
geodesic metrics are CAT(0)).

The definition goes as follows: Suppose L is a flag simplicial complex.
Define the systole sys(L) to be the minimum of (lenghtγ), where γ is is
a full subcomplex of L homeomorphic to S1 and the length of γ is just
the number of edges in γ. We say a simplicial complex X is k-systolic
if it is simply connected and for any simplex σ, the systole of the link
of σ is at least k. We say X is systolic if it is 6-systolic.

The point we are trying to make is that systolicity is indeed a good
analog of CAT(0), as good as CAT(0) cubical complexes. We have
proved significant parts of the CAT(0) package. Alas the fixed point
theorem is still open.

Conjecture A finite group F acting on a systolic complex X by
simplicial automorphisms has a fixed point.

We understand convexity well enough to be able to prove that fixed
point sets XF are contractible if nonempty. So if the Conjecture is true,
systolic spaces provide geometric models for EG of systolic groups.
Something you might like.

There are many examples of systolic spaces (and their compact quo-
tients) in any dimension, but they are somewhat exotic from the usual
standpoint. Three (related) examples of their strange properties are

46TJ +JŚ, Simplicial nonpositive curvature, to appear in Publ. Math. IHES
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1. Systolic groups, that is fundamental groups of locally systolic
spaces, do not contain fundamental groups of closed aspherical mani-
folds covered by Rn, n ≥ 3.

2. Boundaries of Gromov hyperbolic systolic groups are hereditarily
aspherical (every closed subset in ∂X is aspherical in appropriate Čech
sense). Moreover the map induced by inclusion A ⊂ X is injective on
the Čech π1

47.
3. A systolic space X is asymptotically hereditarily aspherical 48.

This means that for every r ≥ 0 there exists R ≥ r, such that for every
subcomplex A ⊂ X the inclusion of Rips complexes Rr(A) → RR(A)
induces the zero map on the homotopy groups πi, i ≥ 2)

Study of asymptotic properties of X rather than topological proper-
ties of a strange compactum ∂X looks more like a topology you like.
And in a sense provides a more precise information about X.

One may think that these three properties point towards a definition
of a ”dimension”, according to which systolic groups are 2-dimensional
(it was Dani Wise who told me that those groups, some of which have
large cohomological dimension are ”two dimensional”). It is a specu-
lation as of now, but still a useful guiding principle. And it motivates
questions about non-systolic spaces. Here is an example.

Are there restrictions on ”dimension” of the boundary of a CAT(-1)
cubical complex? We do know that certain nice compact spaces (e.g.
Sn, n ≥ 4) are not boundaries of CAT(-1) cube complexes (this is
related to Vinberg’s theorem on the absence of Coxeter groups acting
cocompactly on the classical hyperbolic spaceHn for large n). Since the
definition of ”dimension” is lacking, I state the question conservatively.

Question What are topological restrictions on boundaries (or on
asymptotic properties) of CAT(-1) cubical complexes? Can one find
a restriction similar to (asymptotic) hereditary asphericity in case of
systolic spaces.

Best regards, Tadeusz

47Various parts of 1. and 2. have been established by Jacek Świa̧tkowski, Damian
Osajda and myself

48TJ+ JŚ, Filling invariants in systolic complexes and groups, submitted
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39. Craig Jensen
Cohomology of pure automorphism groups of free

products of finite groups

Dear Guido,

Recently, John McCammond, John Meier and I verified the Brownstein-
Lee conjecture (Alan Brownstein and Ronnie Lee, volume 150 of Con-
temp. Math. pages 51-61, 1993.) It concerns the cohomology of the
pure symmetric automorphism group of a free group, PΣn, which is
the group which has to take each of the preferred generators of free
group Fn to a conjugate of itself.

Theorem 39.1 (The Brownstein-Lee Conjecture). The cohomology of
H∗(PΣn,Z) is generated by one-dimensional classes α∗ij where i 6= j,
subject to the relations

(1) α∗ij ∧ α∗ij = 0
(2) α∗ij ∧ α∗ji = 0
(3) α∗kj ∧ α∗ji = (α∗kj − α∗ij) ∧ α∗ki

and the Poincaré series is p(z) = (1 + nz)n−1.

What can you tell us about the cohomology of similar groups? A
first question might be:

Question 39.2. What is the cohomology of PAut(Z/p ∗ · · · ∗ Z/p)?
That is, what is the cohomology of the pure (meaning each Z/p in the
free product has to be taken to a conjugate of itself) automorphism
group of a free product of n copies of Z/p?

After you get this, a more generalized question would be:

Question 39.3. Let G1, . . . , Gn be finite abelian groups. What is the
cohomology of PAut(G1 ∗ · · · ∗Gn)?

or perhaps

Question 39.4. Let G1, . . . , Gn be finite abelian groups or Z. What is
the cohomology of PAut(G1 ∗ · · · ∗Gn)?

or perhaps even

Question 39.5. Let G1, . . . , Gn be finite groups or Z. What is the
cohomology of PAut(G1 ∗ · · · ∗Gn)?

I wish you the very best, and hope that your dreams come true.
Best Regards,

Craig Jensen



86 GUIDO’S BOOK OF CONJECTURES



GUIDO’S BOOK OF CONJECTURES 87

40. Radha Kessar and Markus Linckelmann
Alperin’s Weight Conjecture

Dear Guido,

Let p be a prime number. How much of a finite group is p-locally
determined? For instance, consider the following inequalities.

Conjecture 40.1. Let G be a finite group and let P be a Sylow p-
subgroup of G.

(i) The number of conjugacy classes of p′-elements of G is less than or
equal to the number of conjugacy classes of NG(P )/P .

(ii) If P is abelian, then the number of conjugacy classes of G is less
than or equal to the number of conjugacy classes of NG(P ).

The above inequalities would follow from Alperin’s weight conjecture
(J. L. Alperin, Weights for finite groups, The Arcata Conference on
Finite Groups , Proc. Sympos. Pure Math., 47, 369–379, Amer. Math.
Soc., Providence, R.I., 1987):

Let k be an algebraically closed field of characteristic p. For a finite
group H denote by l(kH) denote the number of isomorphism classes
of simple kH-modules and denote by w(kH) the number of isomor-
phism classes of simple projective kH-modules. The weight conjecture
predicts the following:

Conjecture 40.2. Let G be a finite group. Then

l(kG) =
∑
Q∈I

w(kNG(Q)/Q),

where I denotes a set of representatives of G-conjugacy classes of p-
subgroups of G.

Conjecture 40.2 comes in a block-wise version as well and has been
extended and reinterpreted in several ways. Despite having been veri-
fied for many families of finite groups, including finite p-solvable groups,
symmetric groups, finite groups of Lie type and many sporadic simple
groups, a true understanding of Conjecture 40.2 or indeed of Conjec-
ture 40.1 remains elusive. In its original form stated above, Alperin’s
Weight Conjecture is a numerical equality interpreting the number of
simple modules of a finite group or a p-block in terms of the involved
p-local structure. In recent years a more structural approach to this
and related conjectures in terms of cohomological invariants of functors
over certain finite categories has emerged.

We wish you a very happy and healthy retirement.

Radha and Markus

PS (from Radha): Thank you for your Math 655 course in 1992/93
which I enjoyed very much.
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41. Kevin P. Knudson
Relative Completions of Linear Groups

Dear Guido,
We’ve never met in person, but I’ve always admired your work. I

want to take this opportunity to wish you a long and happy retirement.
Here is a question that I’ve thought about a lot, but I can’t seem

to solve. I know you are familiar with the classical Malcev completion
of a group. It has a universal mapping property that allows one to
generalize the definition as follows. Let k be a field and let G be a
group. The unipotent k-completion of G is a prounipotent k-group U
that is universal among such groups admitting a map from G. The
Malcev completion is the case k = Q.

One possible problem with this construction is that it might be triv-
ial; that is, the group U may consist of a single element. This happens,
for example, when H1(G, k) = 0. To get around this, there is a gener-
alization (due to Deligne) called the relative completion. The set-up is
the following. Suppose G is a discrete group and that ρ : G → S is a
representation of G in a semisimple algebraic k-group S. Assume that
the image of ρ is Zariski dense. The completion of G relative to ρ is
a proalgebraic k-group G that is an extension of S by a prounipotent
k-group U :

1 −→ U −→ G −→ S −→ 1,

along with a lift ρ̃ : G → G of ρ. The group G should satisfy the
obvious universal mapping property. If S is the trivial group, then this
reduces to the unipotent completion.

Consider the group G = SLn(k[t]) with the map ρ : SLn(k[t]) →
SLn(k) induced by setting t = 0.

Question 41.1. What is the completion of G relative to ρ?

There is an obvious guess, namely the group SLn(k[[T ]]), and this
turns out to be correct sometimes. I proved this when k is a number
field or a finite field. The proof goes like this. Let K be the kernel of ρ;
this is the congruence subgroup of the ideal (t). Filter K by powers of
(t): Ki = {A ∈ K : A ≡ I mod ti}. Then it is easy to see that for each
i, Ki/Ki+1 ∼= sln(k). Moreover, the filtration K• turns out to be the
lower central series in this case, and so it follows that the unipotent k-

completion of K is lim←−K/K
i = ker{SLn(k[[T ]])

T=0→ SLn(k)}. General
properties of the relative completion then imply that the correct answer
is SLn(k[[T ]]).

This approach fails for other fields, though. Here’s why. Denote the
lower central series of K by Γ•. For any field, there is a short exact
sequence

1 −→ K2/Γ2 −→ H1(K,Z) −→ K/K2 −→ 1.
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The last group is sln(k), and most of the time, the kernelK2/Γ2 surjects
onto the module Ω1

k/Z. For finite fields and number fields, this is no

obstruction, but for k = C, for example, we see that K2/Γ2 is very
large. So K• differs wildly from Γ• and it is therefore not easy to
compute the unipotent completion of K.

Still, I conjecture that SLn(k[[T ]]) is the correct answer all the time.
In fact, I make the following, more ambitious, conjecture.

Conjecture 41.2. Let k be a field and let C be a smooth affine curve
over k. Denote the coordinate ring of C by A and assume that C
has a k-rational point with associated maximal ideal m ⊂ A. Let ρ :
SLn(A)→ SLn(k) be induced by the isomorphism A/m→ k. Finally,

let Â be the m-adic completion of A. Then the completion of SLn(A)

relative to ρ is the group SLn(Â).

I proved that this is true if we replace A by the localization of A at
m. And, not surprisingly, it is true when k is a number field.

That’s all I know. Best wishes.
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42. Max - Albert Knus
Outer automorphisms of order 3 of Lie algebras of type

D4

Simple Lie algebras over algebraically closed fields of characteris-
tic zero are classified by their Dynkin diagrams. Moreover the group
of automorphisms of the Lie algebra modulo the subgroup of inner
automorphisms is isomorphic to the group of symmetries of the corre-
sponding Dynkin diagram. In most cases this group of symmetries has
at most two elements. The case of the Lie algebra of skew-symmetric
8× 8-matrices is exceptional. The Dynkin diagram is D4:

d d d
d��

@@

and has the permutation group S3 as a group of automorphisms. The
automorphisms of the Dynkin diagram can easily be extended to au-
tomorphisms of the Lie algebra using the root system. Thus over an
algebraically closed field, the classes of automorphisms modulo inner
automorphisms are explicitly known.

A complete list of conjugacy classes of outer automorphisms of order
3 over an algebraically closed field can be deduced from the classifica-
tion of automorphisms of finite order of simple Lie algebras. Besides
the conjugacy class of the automorphism constructed with help of the
root system, whose fixed point algebra is of type G2, there is one more
conjugacy class in the full group of automorphisms, whose fixed point
algebra is a simple Lie algebra of type A2.

We consider outer automorphisms of order 3 of simple Lie algebras
over an arbitrary field of characteristic zero. The orthogonal Lie algebra
relative to the quadratic norm form of a Cayley algebra always admits
such automorphisms. This is known as the “local triality principle”
The converse also holds: if a Lie algebra of type D4 admits an outer
automorphism of order 3, then it is the orthogonal Lie algebra relative
to the quadratic norm form of a Cayley algebra. Thus (local) triality
and octonions are mutually “responsible” (Tits) for existence.

By descent, conjugacy classes of order 3 outer automorphisms must
have Lie algebras of type G2 or A2 as fixed point algebras. We con-
jecture that conjugacy classes are essentially classified by the corre-
sponding fixed point algebras and give a complete list of candidates
for the classes. The main ingredient is the notion of a 8-dimensional
symmetric composition:

Let S be a finite dimensional F -vector space with a bilinear mul-
tiplication (x, y) 7→ x ? y. We say that a quadratic form n on S is
multiplicative if n(x ? y) = n(x)n(y) holds for all x, y ∈ S. A nonsin-
gular multiplicative quadratic form can only occur in dimension 1, 2, 4
and 8. A triple (S, ?, n) with a nonsingular multiplicative quadratic
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form n is called a symmetric composition if the polar b of the norm
form n satisfies the relation b(x ? y, z) = b(x, y ? z) for x, z, y ∈ S.
The norm form n of a 8-dimensional symmetric composition is always
the norm of a (unique) Cayley algebra. However the multiplication of
a Cayley algebra does not satisfy the axioms of a symmetric composi-
tion. It is known that there are two types of symmetric compositions
in dimension 8:

1) Let C be a Cayley algebra with involution x 7→ x. The new multi-
plication (x, y) 7→ x·y defines the structure of a symmetric composition
on C (”Type G2”).

2) The other type is associated with a central simple algebra B of
dimension 9 with an involution of second kind over the quadratic ex-
tension K = F [x]/(x2 + 3). Let Sym(B, τ) be the set of symmetric
elements in B and let

Sym(B, τ)0 = {x ∈ Sym(B, τ) | TB(x) = 0}.
the 8-dimensional subspace of reduced trace 0 elements. We define a
multiplication ? on Sym(B, τ)0 by

x ? y = µxy + (1− µ)yx− 1
3
TB(yx)1.

where µ = 1+
√
−3

6
and
√
−3 is the class of x in K. Then

(
Sym(B, τ)0, ?

)
is a symmetric composition with norm n(x) = 1

6
TB(x2) (”Type A2”).

We observe that the fact that n must be the norm form of some Cayley
algebra implies the special choice of the centerK. Details on symmetric
compositions can (for example) be found in the Book of Involutions
(Knus, Merkurjev, Rost, Tignol).

Let o(n) ⊂ EndF (S) be the orthogonal Lie algebra associated to the
norm n of a symmetric composition. For any f ∈ o(n) there are unique
elements g, h ∈ o(n) such that

f(x ? y) = g(x) ? y + x ? h(y)

and it can be shown that ρ : f 7→ g, ρ′ : f 7→ h are outer automor-
phisms of order 3 of o(n) such that ρ2 = ρ′. Moreover the fixed point
Lie algebra under ρ is the Lie algebra of derivations of the algebra
(S, ?). This Lie algebra is of type G2 if S is of type G2 and of type
A2 if S is of type A2. We believe that this construction of outer au-
tomorphisms of order three through symmetric compositions gives a
complete set of representatives of outer automorphisms of order three
up to conjugation. Details will hopefully be in a forthcoming paper.
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43. Peter Kropholler
Classifying spaces for proper actions

It is an open problem to find good algebraic criteria for a group G
to admit a finite dimensional model for EG, the classifying space for
proper actions. Guido Mislin introduced me to this variant of the clas-
sifying space some ten years ago and we together proved a theorem
about it: namely that every HF-group of type FP∞ has a finite dimen-
sional E. This theorem was an improvement of my original conjecture
that HF-groups of type FP∞ should belong to H1F. The class H1F
consists of all groups which admit a proper action on a finite dimen-
sional contractible CW-complex. The proof of the Kropholler–Mislin
theorem shows in addition that all H1F-groups for which there is a
bound on the orders of the finite subgroups have finite dimensional
models for E. Therefore there is the following natural conjecture:

Conjecture 43.1. Every H1F-group has a finite dimensional classify-
ing space for proper actions.

Examples which do not fall within the scope of the Kropholler–Mislin
theorem include quasicyclic groups, the lamplighter group and many
others. However, in all known cases of such examples it is always
possible to verify the conjecture very easily. Therefore the conjecture
is largely of theoretical interest but remains tantalizing.

Wolfgang Lück’s work has greatly improved the dimension bounds
on proper classifying spaces and subsequent authors including Leary,
Martinez and Nucinkis have made further improvements. Lück brought
Bredon cohomology to bear on the problem and in some sense this
answers the original quest for an algebraic criterion. But we may regard
the matter as open research territory while there is no simple proof or
refutation of the above conjecture.
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44. Jean-François Lafont
Construction of classifying spaces with isotropy in

prescribed families of subgroups

Dear Guido,
It was a great pleasure to get to know you before your retirement.

You will finally be free to spend time on the truly important things
in life (your family and doing mathematics), without the hindrance
of teaching classes, going to faculty meetings, and enduring the other
administrative nonsense that is an essential part of our chosen career
path. Here are a few questions that I have been thinking about in the
last few months. I hope you enjoy them, and that at least one of them
will turn out to be non-trivial. With best wishes,

Jean.

For an infinite group Γ, the Farrell-Jones Isomorphism conjecture 49

states that the algebraic K-theory Kn(ZΓ) of the integral group ring
of Γ coincides with HΓ

n (EV CΓ; KZ−∞), a certain equivariant general-
ized homology theory of the Γ-space EV CΓ. This space is a model
for the classifying space for Γ with isotropy in the family of virtually
cyclic subgroups, i.e. a contractible Γ-CW-complex with the prop-
erty that the fixed subset of a subgroup H is contractible if H is a
virtually cyclic subgroup, and is empty otherwise. From such a clas-
sifying space, the homology HΓ

n (EV CΓ; KZ−∞) can be computed via
an Atiyah-Hirzebruch type spectral sequence discovered by Quinn 50.
The ingredients entering into the E2-term of the spectral sequence are
the algebraic K-theory of the various cell-stabilizers. In particular, for
computational purposes, it is interesting to have a model for EV CΓ
that is as “small” as possible. This motivates the first:

Question 44.1. Find an efficient algebraic criterion that determines
whether a finitely generated group Γ has a finite dimensional model for
EV CΓ.

In general, given a family F of subgroups of Γ, one can define a model
for the classifying space EFΓ of Γ with isotropy in the family F 51. For
the family FIN consisting of finite subgroups, the classifying space
EFINΓ has been extensively studied, and explicit finite dimensional
models are known for various classes of groups (δ-hyperbolic groups,

49F.T. Farrell and L. Jones, Isomorphism conjectures in algebraic K-theory, J.
Amer. Math. Soc. 6 (1993), 249-297.

50F. Quinn, Ends of maps, II, Invent. Math. 68 (1982), 353-424.
51W. Lück, Survey on classifying spaces for families of subgroups, Progr. Math.

248, pp. 269-322, Birkhauser, 2005.
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groups acting by isometries on finite dimensional CAT(0) spaces, Cox-
eter groups, etc). In a paper with I. Ortiz 52, we defined the notion
of a collection of subgroups to be adapted to a nested pair F ⊂ F
of families of subgroups (for instance, one could take FIN ⊂ V C).
This consists of a collection of subgroups {Hα} satisfying the following
properties: (1) the collection is conjugacy closed, (2) the groups Hα

are self-normalizing, (3) distinct groups in the collection intersect in
elements of F , and (4) every group in F − F is contained in one of
the Hα. When there exists a collection of subgroups adapted to a pair
F ⊂ F , we explain how to modify a model for EFΓ to obtain a model
for EFΓ. The modifications involve the collection of classifying spaces
EF(Hα)Hα, where F(Hα) is the restriction of the family F to the sub-
group Hα. In particular, when both the EFΓ and the EF(Hα)Hα are
finite dimensional, the construction yields a finite dimensional EFΓ.
This prompts the following:

Question 44.2. Try to identify “natural” non-trivial collections of sub-
groups adapted to the pair FIN ⊂ V C for various classical families of
finitely generated groups.

Since in our construction, the dimension of the EV CΓ is larger than
the dimension of EFINΓ, one can also ask the following:

Question 44.3. Find examples of finitely generated groups Γ for which
there exists a finite dimensional model for EFINΓ, but there do not exist
any finite dimensional models for EV CΓ.

And in fact, one might think that in general, one can find families
of subgroups for which the classifying spaces can be arbitrarily compli-
cated. For instance we can ask:

Question 44.4. For Γ a (non-abelian) infinite group, does there always
exist a family F of subgroups, with FIN ⊂ F , and having the property
that any model for EFΓ is infinite dimensional?

I will conclude with a problem which is a little bit removed from
the types of questions one typically considers in this field, but which I
nevertheless feel is of some interest.

Question 44.5. For finitely presented groups, are the following two
decision problems algorithmically unsolvable?

(1) Does there exist a finite dimensional model for EFINΓ?
(2)Does there exist a finite dimensional model for EV CΓ?

52J.-F. Lafont and I.J. Ortiz, Relative hyperbolicity, classifying spaces, and lower
algebraic K-theory, preprint.
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45. Urs Lang and Stefan Wenger
Isoperimetric inequalities and the asymptotic geometry

of Hadamard spaces

The conjecture we describe here deals with isoperimetric fillings of
k-cycles in a proper cocompact CAT(0)-space X, where it is assumed
that k is greater than or equal to the Euclidean rank of X, i.e. the
maximal n ∈ N for which Rn isometrically embeds into X. In order to
state the conjecture let us fix the following notation. Given a complete
metric space X and k ∈ N we define the filling volume function FVk+1

of X by

FVk+1(s) := sup {FillVol(T ) : T is a k-cycle in X with Vol(T ) ≤ s} ,

where FillVol(T ) is the least volume of a (k + 1)-chain with boundary
T . In this generality, a suitable chain complex is provided by the metric
integral currents introduced by Ambrosio–Kirchheim in 2000. Alter-
natively, one may work with a simplicial approximation or thickening
(e.g. a Rips complex) of X and then use Lipschitz chains or simplicial
chains.

In his seminal paper Filling Riemannian manifolds Gromov proved
that every Hadamard manifold, i.e. complete simply-connected Rie-
mannian manifold of non-positive sectional curvature, admits a Eu-
clidean isoperimetric inequality for k-cycles for every k ≥ 1, thus

FVk+1(s) ≤ Cs
k+1

k

for all s ≥ 0 and for some constant C. More generally, this holds true
for CAT(0)-spaces, and even for metric spaces admitting cone type
inequalities for l-cycles, l = 1, . . . , k, as was shown by S. Wenger in his
thesis. The latter property is shared for example by all geodesic metric
spaces with convex distance function and all Banach spaces.

If X is a CAT(κ)-space with κ < 0, i.e. has a strictly negative upper
curvature bound, then it is not difficult to show that X admits a linear
isoperimetric inequality for k-cycles for every k ≥ 1, i.e.

FVk+1(s) ≤ Cs

for all s and for some constant C. Now, one of the rough guiding
principles in the theory of non-positively curved spaces is that their
asymptotic geometry should exhibit hyperbolic behavior in the dimen-
sions above the rank. The following conjecture appears, though some-
what implicitly, in Gromov’s book on asymptotic invariants of infinite
groups.

Conjecture 45.1. Every proper cocompact CAT(0)-space X of Eu-
clidean rank r admits a linear isoperimetric inequality for k-cycles for
every k ≥ r.
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Instead of assuming X to be proper, cocompact and of Euclidean
rank ≤ k, one may also look at the larger class of CAT(0)-spaces all
of whose asymptotic cones have geometric dimension at most k. For a
proper cocompact CAT(0)-space X, the Euclidean rank r equals 1 if
and only if X is hyperbolic in the sense of Gromov. Then, for k = 1, a
linear isoperimetric inequality holds, as is well-known. More generally,
in geodesic Gromov hyperbolic spaces satisfying suitable conditions on
the geometry on small scales (not necessarily CAT(0)), linear isoperi-
metric inequalities for k-cycles hold for all k ≥ 1. This was shown, in
a simplicial setup, by U. Lang in 2000. In particular, the conjecture
holds in the case r = 1.

As regards the case r > 1, the conjecture is known to hold for sym-
metric spaces of non-compact type. In fact, if X is a symmetric space
of non-compact type and F ⊂ X is a maximal flat of dimension r, the
orthogonal projection onto F decreases r-dimensional volume expo-
nentially with the distance from the flat. This can be used to produce
fillings with a linear volume bound.

A consequence of the above conjecture would be that isoperimetric
inequalities detect the Euclidean rank. This also follows from the fol-
lowing result, which has recently been proved by Wenger: Let k ∈ N
and let X be a quasiconvex metric space admitting cone type inequal-
ities for l-cycles for l = 1, . . . , k. Then X admits a ’sub-Euclidean’
isoperimetric inequality for k-cycles, i.e.

lim sup
s→∞

FVk+1(s)

s
k+1

k

= 0,

if and only if every asymptotic cone of X has dimension at most k.
As it stands the conjecture remains open for most cases even in the
context of Hadamard manifolds.
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46. Ian Leary
Proper actions on acyclic spaces

Dear Guido,
Here are a few questions about proper cellular actions of discrete

groups G on acyclic spaces. I have deliberately avoided the classifying
space for proper G-actions, EG, partly because some of the questions
have already been answered for this space, and partly because I know
that some other people will write to you about questions concerning
EG. I start with a version of the classic question that was posed on
p226 of Ken Brown’s book ‘Cohomology of Groups’:

Question 46.1. If G is of finite virtual cohomological dimension, does
G act properly on some acyclic space of dimension equal to vcdG?

Remark 46.2. If vcdG is not equal to 2, then ‘acyclic’ in the above
question can be replaced by ‘contractible’ without changing the ques-
tion. The answer is ‘yes’ when vcdG = 1 by a theorem of Martin
Dunwoody, and Quillen’s plus construction can be used to replace an
acyclic space of dimension n by a contractible space of dimension equal
to the maximum of n and 3.

Brita Nucinkis and I found examples to show that the dimension of
the space EG can be strictly greater than vcdG [Leary-Nucinkis ‘Some
groups of type V F ’ 2003]. Incidentally, we used Bredon cohomology in
our arguments, a subject that we both learned from you.

Secondly, a rather vague question. It is well-known that vcdG is
finite if and only if G is virtually torsion-free and G acts properly on
some finite dimensional contractible space [K. S. Brown, loc. cit.].

Question 46.3. Are there any results concerning group cohomology
where virtual torsion-freeness plays a role? For example, are there any
results about H∗(G; ZG) that hold for groups of finite vcd, but do not
hold for all groups in Peter Kropholler’s class H1F?

Finally, a few questions concerning the connection between algebraic
and topological finiteness conditions.

Question 46.4. If G is of type FP over a ring R, does G act cellularly
cocompactly on some R-acyclic CW-complex X with stabilizers whose
orders are units in R?

There is an algebraic version of this question too. Define a projec-
tive permutation module for the group algebra RG to be a direct sum
of modules isomorphic to RG/H, where H ranges over the finite sub-
groups whose orders are units in R. Say that G is type FPP over R if
there is a finite resolution of R over RG by finitely generated projective
permutation modules.

Question 46.5. If G is FP over R, is G necessarily of type FPP over
R?
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For R = Z, this question is equivalent to the famous question of
whether every group of type FP is FL.

Question 46.6. If G is FL over a prime field F , does G act freely
cellularly cocompactly on some F -acyclic CW-complex?

Remark 46.7. There are groups that are FP but not FL over Q,
and are FL over C [‘The Euler class of a Poincaré duality group’,
2002]. Such a group cannot act freely cellularly cocompactly on any C-
acyclic CW-complex. It is because of these examples that the previous
question is stated only for the fields Q and Fp.
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47. Peter A. Linnell
`p-homology of one-relator groups

Let G be a group and let

. . . −→ CGen+1 dn−→ CGen
dn−1−→ · · · d1−→ CGe1

d0−→ CG −→ C −→ 0

be a free CG-resolution of C. Let 1 ≤ p <∞ and for n ≥ 0, let

dn
∗ : CGen+1 ⊗CG `

p(G) −→ CGen ⊗CG `
p(G),

d∗n : HomCG(CGen , `p(G)) −→ HomCG(CGen+1 , `p(G))

be the maps induced by dn; for convenience, we let d−1
∗ = d∗−1 = 0.

Then one has the usual homology and cohomology groups

Hn(G, `p(G)) = ker dn−1
∗ / im dn

∗ ,

Hn(G, `p(G)) = ker d∗n/ im d∗n−1,

which we shall call the (unreduced) `p-homology and cohomology groups
of G respectively. In the case when all the en are finite,

CGen ⊗CG `
p(G) ∼= `p(G)en ∼= HomCG(CGen , `p(G)),

so one can also define the reduced `p-homology and cohomology groups
of G:

H̄n(G, `p(G)) = ker dn−1
∗ /im dn

∗ ,

H̄n(G, `p(G)) = ker d∗n/im d∗n−1,

where ¯ indicates the closure in `p(G)n. The first `p-cohomology groups
(reduced and unreduced) have been studied extensively recently by
Bekka, Bourdon, Florian, Valette and others. Also Kappos has inter-
esting results on general reduced homology and cohomology groups.

Let us concentrate now on the case G is a finitely generated torsion-
free one-relator group. Let d denote the number of generators of G.
Then we have a CG-resolution of the form

0 −→ CG −→ CGd −→ CG −→ 0.

From this it is clear that homology groups Hn(G, `p(G)), Hn(G, `p(G)),
H̄n(G, `p(G)) and H̄n(G, `p(G)) are all zero for n ≥ 3. Warren Dicks
and I determined the `2-Betti numbers of such groups53; an immediate
consequence of this is that H2(G, `

p(G)) = H̄2(G, `
p(G)) = 0 for p ≤ 2.

The proof of this depended on the results that a torsion-free group one-
relator group is left orderable, and that if H is a left orderable group,
0 6= α ∈ CH and 0 6= θ ∈ `2(H), then αθ 6= 0.54 However if p > 2, then
we can have 0 6= α ∈ CH and 0 6= θ ∈ `p(H) with αθ = 0. Thus we
have the following conjecture.

53`2-Betti numbers of one-relator groups, arxiv.org/abs/math.GR/0508370
54Peter A. Linnell. Zero divisors and L2(G). C. R. Acad. Sci. Paris Sér. I Math.,

315(1):49–53, 1992.
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Conjecture 47.1. Let G be a finitely generated torsion-free one-relator
group and let 1 ≤ p <∞. Then H2(G, `

p(G)) = H̄2(G, `
p(G)) = 0.

This conjecture is true if G is a surface group, orientable or not.
If Conjecture 47.1 is true, then it follows from Kappos’s Proposition

3.555 that H̄2(G, `p(G)) = 0 for all p > 1. The situation for unreduced
cohomology is less clear. Let us consider the special case p = 2. Recall
that 〈x, y | xyxy = 1〉 is the Klein bottle group. Our next conjecture
is

Conjecture 47.2. Let G be a finitely generated torsion-free one-relator
group. Then H2(G, `2(G)) = 0, provided G is neither Z × Z nor the
Klein bottle group.

This conjecture is also true if G is a surface group, orientable or not.
Finally we consider the first homology groups. A result of Guichardet

(see Theorem A56) shows that if G is an arbitrary infinite group, then
the natural epimorphism H1(G, `2(G)) → H̄1(G, `2(G)) is an isomor-
phism if and only if G is nonamenable. This leads to the following
conjecture.

Conjecture 47.3. Let G be a finitely generated torsion-free one-relator
group which is neither Z × Z nor the Klein bottle group. Then the
natural epimorphism H1(G, `

2(G))→ H̄1(G, `
2(G)) is an isomorphism.

55Elias Kappos, `p-cohomology for groups of type FPn.
arxiv.org/abs/math/0511002

56Mohammed E. B. Bekka and Alain Valette. Group cohomology, harmonic
functions and the first L2-Betti number. Potential Anal., 6(4):313–326, 1997.
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48. Wolfgang Lück
The Farrell-Jones Conjecture in algebraic K- and

L-theory

One of my favorite conjectures in geometric topology is the Borel
Conjecture. It says that a homotopy equivalence between closed aspher-
ical topological manifolds is homotopic to a heomeomorphism. This
implies that two closed aspherical topological manifolds are homeo-
morphic if and only if their fundamental groups are isomorphic. (This
is not true if one considers smooth manifolds and replaces homeomor-
phic by diffeomorphism). This is the topological analogue of Mostow
rigidity. Another prominent conjecture is the Novikov Conjecture. It
asserts that the higher signatures of a closed oriented smooth mani-
fold are homotopy invariants. It is motivated by the signature formula
of Hirzebruch. Furthermore the Bass Conjecture has gotten a lot of
attention since it was formulated. It says that for a group G and an
integral domain R of characteristic 0 the Hattori-Stallings rank of a
finitely generated projective RG module evaluated at an element g of
G is non-trivial only if g has finite order |g| and |g| · 1R is not a unit
in R. Finally we mention the conjectures that for a torsionfree group

G the reduced projective class group K̃0(ZG) and its Whitehead group
Wh(G) vanish. The last two conjectures have equivalent geometric
counterparts, if G is finitely presented, namely, that any finitely dom-
inated CW -complex is homotopy equivalent to a finite CW -complex
and that any h-cobordism over a closed manifold of dimension ≥ 5 is
trivial.

It turns out the Farrell-Jones Conjecture for algebraic K- and L-
theory does imply all of the conjectures above and gives a good under-
standing of the algebraic K and L-theory of group rings RG in terms of
the algebraic K- and L-theory of the coefficient ring R and the homol-
ogy of the group G. I will formulate it only for a torsionfree group G
and a regular ring R. In this case the Farrell-Jones Conjecture predicts
that the classical assembly maps

Hn(BG; KR)
∼=−→ Kn(RG);

Hn(BG; LR)[1/2]
∼=−→ Ln(RG)[1/2];

are bijective for all n. The sources of the assembly maps above are
homology theories such that Hn(pt.; KR) = Kn(R) and Hn(pt.; LR) =
Ln(R) hold. (In the L-theory case one needs to invert 2 for the ver-
sion above but does not need regular). The general formulation uses
more elaborate equivariant homology theories and classifying spaces of
families.

It is fascinating how so many different important conjectures in
topology, geometry and K-theory do follow from a single one. The
Farrell-Jones Conjecture is still open but known for a good class of
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groups. Its non-commutative counterpart is the Baum-Connes Conjec-
ture.

If one reads the text above and knows Guido’s excellent and broad
work, one realizes that Guido has studied and contributed to nearly all
of the conjectures or notions mentioned above. And this does not cover
all of his work! So I like to express my deepest respect to an excellent
mathematician and a shining and very friendly person. I wish you all
the best, Guido!

Wolfgang Lück
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49. Roman Mikhailov and Inder Bir S. Passi
Residually nilpotent groups

Dear Guido,

In general, it is difficult to decide whether a given group is residually
nilpotent; this is so even for rather simple looking one-relator groups.
There is thus need to develop general methods for checking residual
nilpotence. Apart from being of group-theoretic interest, such an inves-
tigation will also have impact on problems in topology; for example, in
the context of Baumslag’s parafree conjecture, Whitehead’s asphericity
conjecture.

We would like to list here for you two problems on residual nilpotence.
You may also like to see Kourovka Notebook 2006, Problem 16.65.

Problem 1. If F is a free group with finite basis x1, ... , xn, and r a
basic commutator, then is the group 〈x1, ..., xn | r〉 residually nilpotent?

LetG be a residually nilpotent group. We say thatG is absolutely resid-
ually nilpotent if for any k-central extension 1 → N → G̃ → G → 1,
of G, i.e., a central extension satisfying [N, G̃, . . . , G̃︸ ︷︷ ︸

k terms

] = 1, the group

G̃ is again residually nilpotent. As a first step, on examining abso-
lutely residual nilpotence for one-relator groups, it turns out that ev-
ery central extension of a one-relator residually nilpotent group is again
residually nilpotent57. We are thus motivated to raise the following

Problem 2. Is every one-relator residually nilpotent group absolutely
residually nilpotent?

It can be shown that the statement that finitely-generated parafree
groups are absolutely residually nilpotent implies Baumslag’s parafree
conjecture: H2(G) = 0 for a finitely generated parafree group G, and
conversely.

We wish you a very healthy, peaceful and mathematically active
retirement. Your contribution to the Bass’ conjecture has been of great
interest to us.

Best regards,

Roman & Inder Bir

57R. V. Mikhailov: Sbornik: Mathematics 196:11 1659-1695 (2005).
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50. Graham A. Niblo and Michah Sageev
The Kropholler conjecture

A finitely generated group G is said to split over subgroup H if
and only if G may be decomposed as an amalgamated free product
G = A ∗

C
B (with A 6= C 6= B) or as an HNN extension G = A ∗

C
. The

Kropholler conjecture is concerned with the existence of such splittings.
Given a subgroup H of a finitely generated group G the invariant

e(G,H) is defined to be the number of Freudenthal (topological) ends of
the quotient of the Cayley graph of G under the action of the subgroup
H. This number does not depend on the (finite) generating set chosen
for G [3] so it is an invariant of the pair (G,H). For example, if G is a
free abelian group and H is an infinite cyclic subgroup then e(G,H) =
0, if G has rank 1, e(G,H) = 2 if G has rank 2 and e(G,H) = 1 if G has
rank greater than or equal to 3. This invariant generalises Stallings’
definition of the number of ends of the group G since if H = {1} then
e(G,H) = e(G).

In [4] Stallings showed that the group G splits over some finite sub-
group C if and only if e(G) ≥ 2. There are several important gener-
alisations of this fact, the most wide ranging being the algebraic torus
theorem, established by Dunwoody and Swenson [1]. This states that,
under suitable additional hypotheses, if G contains a polycyclic-by-
finite subgroup H of Hirsch length n with e(G,H) ≥ 2 then either

1. G is virtually polycyclic of Hirsch length n+ 1,
2. G splits over a virtually polycyclic subgroup of Hirsch length n,
3. G is an extension of a virtually polycyclic group of Hirsch length
n− 1 by a Fuchsian group.

This theorem generalises the classical torus theorem from low dimen-
sional topology which asserts that a closed 3-manifold which admits an
immersed incompressible torus either admits an embedded incompress-
ible torus or has a Seifert fibration. These topological conclusions imply
the algebraic conclusions for the fundamental group of the manifold.
An important ingredient of the proof of the algebraic torus theorem
is a special case of the so called Kropholler conjecture. Its original
formulation relies on the following observation of Scott:

A subgroup H of a finitely generated group G satisfies e(G,H) ≥ 2
if and only if G admits a subset A satisfying the following:

1. A = HA,
2. A is H-almost invariant, and
3. A is H-proper, i. e. , neither A nor G− A is H-finite.

We will refer to the subset A as a proper H-almost invariant subset.
In his proof of the algebraic torus theorem for Poincaré duality groups
Kropholler observed that, under certain additional hypotheses, if G
admits a proper H-almost invariant set A such that A = AH then G
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admits a splitting over some subgroup C < G related to H (see [2] for
an outline of the proof). He conjectured that the additional hypotheses
were inessential. Specifically:

Conjecture 50.1 (The Kropholler conjecture). Let G be a finitely
generated group and H < G. If G contains a proper H-almost invariant
subset A such that A = AH then G admits a non-trivial splitting over
a subgroup C which is commensurable with a subgroup of H.

The conjecture is known to hold when G is a Poincaré duality group
or when G is word hyperbolic and H is a quasi-convex subgroup. In
general it is known (for an arbitrary finitely generated group G) when-
ever H is a subgroup which satisfies the following descending chain
condition:

Every descending chain of subgroups H = H0 ≥ H1 ≥ H2 ≥ . . . such
that Hi+1 has infinite index in Hi eventually terminates.

This condition holds for example for the class of finitely generated
polycyclic groups, in which class the Hirsch length is the factor con-
trolling the length of such a chain. This is a key ingredient in the proof
of the full algebraic torus theorem.

An alternative, more geometric, point of view on the conjecture is
provided by the following characterisation:

Theorem 50.2. Given a finitely generated subgroup G and a subgroup
H < G the invariant e(G,H) is greater than or equal to 2 if and only
if G acts with no global fixed point on a CAT(0) cubical complex with
one orbit of hyperplanes, and so that H is a hyperplane stabiliser. H
admits a right invariant, proper H-almost invariant subset if and only
if the action can be chosen so that H has a fixed point in the complex.

Bibliography

(1) M. J. Dunwoody and E. L. Swenson, ’The algebraic torus the-
orem’, Invent. Math. 140 (2000), no. 3, pp. 605–637.

(2) P. H. Kropholler, A group theoretic proof of the Torus Theorem,
in: (eds. G. A. Niblo and M. A. Roller) Geometric Group
Theory, Sussex 1991, Volume 1, (Cambridge University Press
1993), pp. 138158.

(3) G. P. Scott, ‘Ends of pairs of groups’, Journal of Pure and
Applied AlgebraVol. 11, 1977, pp 179–198.

(4) J. R. Stallings, ‘On torsion-free groups with infinitely many
ends’, Ann. of Math. 88, (1968), pp. 312–334.
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51. Brita Nucinkis
Soluble groups of type VF

Dear Guido,
Cohomological finiteness conditions for soluble groups are very well

understood for torsion-free soluble groups, but there remains a gap for
soluble groups with torsion. This can be summarised by the following
conjecture:

Conjecture 51.1. Every soluble group G of type VF admits a cocom-
pact model for EG.

I believe it all began with Urs Stammbach’s result [Stammbach 1970],
that for a torsion-free soluble group the homological dimension hdG is
equal to the Hirsch length hG of the group. It is well known that
or polycylic groups the Hirsch length is equal to the cohomological
dimension, cdG and it was Karl Gruenberg, who showed that a torsion-
free nilpotent group is finitely generated if and only if cdG = hG. It
was conjectured and proved in several cases by Gildenhuys and Strebel
[On the cohomology of soluble groups II, 1982] that soluble groups are
of type FP if and only if the cohomological dimension is equal to the
Hirsch length, and finite. This conjecture was finally proved by Peter
Kropholler [Cohomological dimension of soluble groups, 1986]. A later
result [Kropholler, On groups of type FP∞, 1993] means that this result
can be phrased as follows:

Theorem 51.2. [Kropholler] Let G be a soluble group. Then the fol-
lowing are equivalent

(1) G is of type FP∞,
(2) G is virtually of type FP,
(3) vcdG = hG <∞,
(4) G is virtually torsion-free and constructible.

The fact that G is constructible implies that G is finitely presented,
thus any torsion-free group satisfying the conditions of the Theorem is
of type F.

As soon as the group has torsion we are in the realm of EG and
Bredon (co)homology. As for the torsion-free case, for countable groups
the Bredon cohomological dimension cdG and the Bredon homological
dimension hdG differ by at most one. Ramon Flores and I [Bredon
homology for elementary amenable groups, 2006] proved the analogue
to Stammbach’s result, namely that for soluble groups, hdG = hG.
This naturally leads to the following conjecture:
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Conjecture 51.3. Let G be a soluble group. Then the following are
equivalent:

(1) G is of type FP∞
(2) cdG = hG <∞
(3) G is of type FP∞.

FP∞ denotes the Bredon analogue to FP∞. It is not hard to see
that (1)⇒ (2)⇒ (3). In light of Kropholler’s result it is obvious that
Conjecture 51.1 implies Conjecture 51.3. Ian Leary and I, however,
have examples of groups of type VF, which do not admit a cocompact
model for EG [Some groups of type VF 2003], but all available evidence
leads me to believe that Conjecture 51.1 still holds for soluble groups.
Analogously to Lück’s argument for EG one can show that a group is of
type FP∞ if and only if it has finitely many conjugacy classes of finite
subgroups and all centralisers of finite subgroups are of type FP∞. I am
confident that proving that soluble groups of type FP∞ have finitely
many conjugacy classes of finite subgroups is fairly straightforward.
Hence, to prove (3) ⇒ (1) in 51.3 it remains to show that centralisers
of finite subgroups are of type FP∞. To prove Conjecture 51.1 we will
also need to show that these are finitely presented. These two things
however, remain to this day frustratingly elusive.
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52. Tim R. Riley
The Dehn function of SLn(Z)

Dear Guido, There’s more than enough in this book to occupy a life-
time, let alone a retirement. All best wishes and many congratulations,
Tim

For a word w on a1
±1, . . . , am

±1 representing 1 in a finite presen-
tation P = 〈a1, . . . , am | R〉 of a group Γ, define Area(w) to be the

minimal A ∈ N such that there is an equality w =
∏A

i=1 ui
−1ri

εiui in
the free group F (a1, . . . , am) for some εi = ±1, some words ui, and
some ri ∈ R. Equivalently, Area(w) is the minimal A such that there
is a van Kampen diagram for w over P with at most A 2-cells. Defining
Area(n) to be the maximum of Area(w) over all w that have length at
most n and represent 1 in Γ, gives the Dehn function Area : N→ N of
P . Whilst Area : N→ N is defined for P , a different finite presentation
P ′ for Γ will yield a Dehn function Area′ : N→ N that is qualitatively
the same — for example, (∃C > 1, ∀n, (1/C)n2 ≤ Area′(n) ≤ Cn2) if
and only if the same is true for Area : N→ N (the C may differ).

Question 52.1. Is the Dehn function of SLn(Z) quadratic when n ≥ 4?

Presenting this as a question, rather that a claim, conjecture, or the
like, may be unduly conservative. In his 1993 survey article58, Gersten
describes the quadratic Dehn function as an assertion of W.P.Thurston.

I am not even aware of a proof that the Dehn function of SLn(Z) is
bounded above by a polynomial when n ≥ 4. By contrast, the Dehn
function of SL2(Z) is known to grow linearly – SL2(Z) is hyperbolic
– and that of SL3(Z) grows like n 7→ exp(n): Epstein & Thurston59

proved an exponential lower bound and a result sketched by Gromov60

gives the upper bound (an elementary proof would perhaps be a step
towards 52.1).

Of course, 52.1 presupposes SLn(Z) is finite presentable, but that
has been long known. The n2−n matrices eij with 1’s on the diagonal,
the off-diagonal ij-entry 1, and all others 0, generate SLn(Z). Milnor61,
following J.R.Silvester and in turn Nielsen and Magnus, explains that
the Steinberg relations {[eij, ekl] = 1}i6=l,j 6=k and {[ejk, ekl] = ejl}j 6=l

together with {(eijeji
−1eij)

4 = 1}i6=j are defining relations. A proof of
52.1 would be an exacting quantitative proof of finite presentability.

58Isoperimetric and isodiametric functions. In G.Niblo and M.Roller, eds., Geo-
metric group theory I, no. 181 in LMS lecture notes, C.U.P., 1993.

59D.B.A.Epstein et al., Word Processing in Groups, Jones and Bartlett, 1992.
60Asymptotic invariants of infinite groups. In G. Niblo and M. Roller, eds.,

Geometric group theory II, no. 182 in LMS lecture notes, C.U.P., 1993. See
§2B1, §5A7, §5D(5)(c).

61Introduction to algebraic K-theory, vol. 72 of Annals of Mathematical Studies,
Princeton University Press, 1971.
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One can regard 52.1 as a higher dimensional version of the Lubotzky-
Mozes-Raghunathan Theorem, establishing the existence of efficient
words representing elements g of SLn(Z) for n ≥ 3, that is, words of
length like the log of the maximum of the absolute values of the matrix
entries.62 As a word representing g amounts to a path in the Cayley
graph from 1 to g, the L.-M.-R. Theorem can be thought of as saying
that 0-spheres admit efficient fillings by 1-discs. A word w represent-
ing 1 in a finite presentation P corresponds to a loop ρw in the Cayley
graph; a van Kampen diagram for w can be regarded as a combinato-
rial homotopy disc for ρw in the Cayley 2-complex of P . So 52.1 is,
roughly speaking, the claim that 1-spheres admit efficient fillings by
2-discs in SLn(Z) for n ≥ 4. Gromov60 takes this further and suggests
that in SLn(Z), Euclidean isoperimetric inequalities concerning filling
k-spheres by (k + 1)-discs persist up to k = n− 3. (For k = n− 2, the
exponential lower bound of Epstein & Thurston59 applies.)

One attack on 52.1 is that whilst SLn(Z) is not a cocompact lattice
in the symmetric space X := SLn(R)/SO(n), and so the quadratic
isoperimetric inequality enjoyed by X does not immediately pass to
SLn(Z), open horoballs can be removed from X to give a space X0 on
which SLn(Z) acts cocompactly. Druţu63 and Leuzinger & Pittet64 have
made progress in this direction, including a quadratic isoperimetric
inequality for the boundary horosphere of each removed horoball.

Chatterji has asked whether for n ≥ 4, SLn(Z) enjoys her property
Lδ for some δ ≥ 0, which would imply a sub-cubic Dehn function65.

The author’s efforts towards 52.1 have, to date, yielded66 a version of
L.-M.-R. giving explicit efficient words. This may aid the construction
of van Kampen diagrams, but that remains to be seen. However it has
led to progress elsewhere.67

Finally, we mention that for n > 3, the Dehn functions of the cousins
Aut(Fn) and Out(Fn) of SLn(Z) are also unknown.68

62Cyclic subgroups of exponential growth and metrics on discrete groups, C.R.
Acad. Sci. Paris, Série 1, 317:723–740, 1993. The word and Riemannian metrics
on lattices of semisimple groups, I.H.É.S. Publ. Math., 91:5–53, 2000.

63Filling in solvable groups and in lattices in semisimple groups, Topology,
43:983–1033, 2004.

64On quadratic Dehn functions, Math. Z., 248(4):725—755, 2004.
65M.Elder, Lδ groups are almost convex and have a sub-cubic Dehn function,

Algebr. Geom. Topol., 4:23–29 (electronic), 2004.
66Navigating the Cayley graphs of SLN (Z) and SLN (Fp), Geometriae Dedicata,

113(1):215–229, 2005.
67M.Kassabov and T.R.Riley, Diameters of Cayley graphs of Chevalley groups,

to appear in Eur. J. Comb.
68M.R. Bridson and K. Vogtmann, Automorphism groups of free, surface, and

free abelian groups, arXiv:math.GR/0507612.
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53. Kim Ruane
My Two Favorite CAT(0) Group Questions

First, I would like to wish you a Happy Retirement Guido! I would
also like to thank you for your kindness during my time in Zurich back
in 1999/2000.

The conjectures discussed here are two of my favorites because I
learned of them as a graduate student and they motivated me to study
groups acting on CAT(0) spaces and boundaries.

We say a group G acts geometrically on a complete, proper, geodesic
metric space X if G acts properly discontinuously and cocompactly
by isometries on X. If G acts geometrically on a CAT(0) space, then
G is called a CAT(0) group. Recall that if G acts geometrically on a
δ-hyperbolic metric space, then G is word hyperbolic.

For G word hyperbolic, the following facts are well-known and can
be found in the 1987 Gromov paper in Essays in Group Theory. Of
course, many careful proofs have been written down in other places.

(1) Any Cayley graph of G is δ-hyperbolic using the corresponding
word metric.

(2) The boundary of G, denoted ∂G, is well-defined up to homeo-
morphism - i.e., if G acts geometrically on spacesX and Y , then
X and Y are quasi-isometric and this quasi-isometry extends
to an (equivariant) homeomorphism of boundaries ∂X → ∂Y .

(3) G acts as a convergence group on ∂G.
(4) G satisfies the Tits Alternative.
(5) Any finite index subgroup and any finite extension of G is again

word hyperbolic.

The two conjectures I am interested in here involve the last two
facts listed above, but for CAT(0) groups as opposed to word hyper-
bolic groups. If G is word hyperbolic, it is easy to see that any finite
index subgroup or any finite extension of G is again word hyperbolic.
Indeed, any such group is quasi-isometric to G and thus inherits word
hyperbolicity via the quasi-isometry.

If G is a CAT(0) group acting on a CAT(0) space X and H is a
finite index subgroup of G, then H is again a CAT(0) group. This is
easy since H acts geometrically on X. Indeed, any subgroup of G will
again act properly discontinuously and by isometries. Since H is finite
index, H will also act cocompactly. But if K is a finite extension of G,
then the question remains:

Question 53.1. Suppose K is a finite extension of a CAT(0) group
G. Is K also a CAT(0) group?

The main problem here is that there is no geometric construction
that models the group theoretic finite extension. It is still the case that
K and G are quasi-isometric groups, but there is no natural candidate
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for a CAT(0) space for K to act on. Well, that isn’t quite true...there
is a candidate which comes from a construction of Serre. Suppose G
is a finite index normal subgroup of K of index D and suppose G acts
on a topological space X. Then Serre’s construction gives an action of
K on the direct product of D copies of X. In our setting, if G acts
geometrically on X, then Serre’s construction will produce a properly
discontinuous and isometric action of K on the product of D copies of
X (which is still CAT(0) using the product metric). The problem is
finding a convex subspace on which K acts cocompactly.

The second conjecture is the Tits Alternative for CAT(0) groups.
Recall that a groupG satisfies the Tits Alternative if for every subgroup
H of G, either H is virtually solvable or H contains a free subgroup of
rank 2.

Question 53.2. Does the Tits Alternative hold for G if G is a CAT(0)
group?

This question is still open even if the CAT(0) space is a manifold.
If G is word hyperbolic, then G satisfies the Tits Alternative. This

fact was first observed by Gromov and there are many nice proofs writ-
ten down in the literature. The beauty of this result (for me anyway!)
is that the proof is quite simple if you use the action of the group G
on its boundary ∂G. The proof goes like this: suppose H is an infinite
subgroup of G and consider the closure H of H inside G∪∂G. The limit
set of H, denoted L(H), is H ∩ ∂G. One first shows that |L(H)| ≥ 2.
If it equals 2, then H is virtually Z. If not, then there must be two
infinite order elements a, b ∈ H with L(〈a〉) ∩ L(〈b〉) = ∅. Using the
dynamics of the action on ∂G, one can do a ping-pong argument using
carefully chosen open sets around the limit points of these two cyclic
subgroups to show that powers of a and b generate an F2 in H. This
is simply beautiful and everyone should want to do geometric group
theory after seeing this proof!

For a CAT(0) group G acting on X, one could try to use the action of
G onX. However, this is not a convergence group action. In particular,
Z ⊕ Z acts trivially on ∂E2 ≡ S1. The most recent result of interest
here is from M. Sageev and D. Wise (2004) for groups acting properly
on finite dimensional CAT(0) cube complexes. If such a group G has a
bound on the order of finite subgroups (a necessary condition) then any
subgroup either contains F2 or is virtually a finitely generated abelian
subgroup.
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54. Roman Sauer and Thomas Schick
Homotopy invariance of almost flat Betti numbers

Dear Guido, we would like to present a question that belongs to the
circle of analytical-topological problems around the Novikov conjec-
ture.

The Novikov conjecture about the homotopy invariance of higher
signatures has been a driving force for research in topology for many
years. One of the approaches, which gives partial results, uses the
signature operator twisted with almost flat bundles.

In this context Hilsum and Skandalis (J. Reine Ang. Math. 423, 1992)
prove the following result.

Theorem. Let M1 and M2 be closed, oriented Riemannian manifolds,
and f : M1 → M2 a homotopy equivalence. Then there is a constant
c > 0 with the following property:

Let (E,∇) be an Euclidean vector bundle over M2. Let s2(E) denote
the index of the signature operator on M2 twisted with E, and let
s1(f

∗E) denote the index of the signature operator on M1 twisted with
the pullback bundle f ∗E.

If ||∇2|| < c, i.e. if the curvature of the bundle (E,∇) is sufficiently
small (where the norm is the supremum of the operator norm in the
unit sphere bundle of Λ2TM2), then

s1(E) = s2(f
∗E).

In other words, the index of the twisted signature operator is a ho-
motopy invariant for twisting bundles with sufficiently small curvature.

Hilsum and Skandalis prove this with a clever deformation argument
(with a proof that evidently also covers the flat case). An alternative
proof, which reduces the statement to the homotopy invariance for flat
twisting bundles of C∗-algebra modules and bases on calculations in
the K-theory of C∗-algebras, has been recently worked out by Bernhard
Hanke and one of us (Thomas).

The following question is motivated by the theorem above and arose
from discussions with Paolo Piazza and Sara Azzali.

Question. Retain the situation of the Theorem stated above. The
kernels of the twisted signature operators are graded by the degree of
differential forms. By taking their dimensions we obtain the so-called
twisted Betti numbers of E and f ∗E, which we denote by bk(E) and
bk(f

∗E).
Is it true that, for sufficiently small c > 0 as in the theorem, ||∇2|| < c

implies bk(E) = bk(f
∗E)?

Note that this is the case for the corresponding Euler characteristic:∑
k

(−1)kbk(E) =
∑

k

(−1)kbk(f
∗E)



GUIDO’S BOOK OF CONJECTURES 115

for sufficiently small curvature ||∇2||, since the Euler characteristic is
again an index. The proof for the invariance of the twisted Euler char-
acteristic is actually considerably easier than the one for the invariance
of the twisted signature.

We find the question interesting since a positive answer would imply
that the η-invariants of twisted signature operators are much better
behaved than one could expect a priori. This could open up the way
to construct new “higher” homotopy invariants of smooth manifolds.

It seems that there is no “standard” approach to answer the question.
Analysists tend to think the statement should not be true. However,
if we twist with a flat bundle, the answer to our question is yes — but
requires the insight of the de Rham theorem. Analysis alone can be
misleading dealing with such questions, because it suggests too many
deformations that do not have a topological meaning.
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55. Benjamin Schmidt
Blocking light in closed Riemannian manifolds

To what extent does the collision of light determine the global ge-
ometry of space? In this note we’ll discuss two conjectures, both of
which assert that the focusing behavior of light in locally symmet-
ric Riemannian manifolds are unique to these spaces. Throughout,
(M, g) denotes a C∞-smooth, connected, and compact manifold with-
out boundary equipped with a C∞-smooth Riemannian metric g. Ge-
odesic segments γ ⊂M are identified with their unit speed paramater-
ization γ : [0, Lγ]→M, where Lγ is the length of the segment γ.

Definition 55.1 (Light). Let X, Y ⊂ (M, g) be two nonempty subsets,
and letGg(X, Y ) denote the set of geodesic segments γ ⊂M with initial
point γ(0) ∈ X and terminal point γ(Lγ) ∈ Y . The light from X to Y
is the set

Lg(X, Y ) = {γ ∈ Gg(X, Y )|interior(γ) ∩ (X ∪ Y ) = ∅}.

Definition 55.2 (Blocking Set). Let X, Y ⊂ M be two nonempty
subsets. A subset B ⊂M is a blocking set for Lg(X, Y ) provided that
for every γ ∈ Lg(X, Y ),

interior(γ) ∩B 6= ∅.

We focus on closed Riemannian manifolds for which the light between
pairs of points in M is blocked by a finite set of points. By a theorem
of Serre ([Ser]), Gg(x, y) is infinite when x, y ∈ M are distinct points.
However, Lg(x, y) ⊂ Gg(x, y) may or may not be a infinite subset. This
is the case, for example, in a round sphere where all of the infinitely
many geodesics between a typical pair of points cover a single periodic
geodesic.

Definition 55.3 (Blocking Number). Let x, y ∈ M be two (possibly
not distinct) points in M . The blocking number bg(x, y) for Lg(x, y) is
defined as

bg(x, y) = inf{n ∈ N ∪ {∞}|Lg(x, y)is blocked by n points}.

Our starting point is the following surprising theorem from [Gut]:

Theorem 55.4 (Gutkin). Let (M, g) be a closed flat Riemannian man-
ifold. Then there exist n ∈ N depending only on the dimension of M
such that bg ≤ n as a function on M ×M .

We believe the following is true:

Conjecture 55.5. Let (M, g) be a closed Riemannian manifold. If
there exists n ∈ N such that bg ≤ n then g is a flat metric.
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This conjecture is true for Riemannian metrics of nonpositive sec-
tional curvatures as shown independently by Burns/Gutkin and La-
font/Schmidt ([Bur/Gut], [Laf/Sch]). The focusing of light is also in-
teresting in the context of the compact type locally symmetric spaces.
In [Gut/Sch], Gutkin and Schroeder establish the following:

Theorem 55.6 (Gutkin/Schroeder). Let (M, g) be a closed locally
symmetric space of compact type with R-rank k ≥ 1. Then bg(x, y) ≤ 2k

for almost all (x, y) ∈M ×M .

We refer the reader to [Gut/Sch] for a more precise formulation and
discussion of this result. Presently, we’ll restrict attention to the com-
pact rank one symmetric spaces or CROSSes. The CROSSes are classi-
fied and consist of the round spheres and the various projective spaces.
The CROSSes all satisfy the following blocking property:

Definition 55.7 (Cross Blocking). A closed Riemannian manifold
(M, g) has property CB if

0 < d(x, y) < Diam(M, g) =⇒ bg(x, y) ≤ 2.

Round spheres additionally satisfy the following blocking property,
a blocking interpretation of antipodal points:

Definition 55.8 (Sphere Blocking). A closed Riemannian manifold
(M, g) has property SB if bg(x, x) = 1 for every x ∈M .

We believe the following is true:

Conjecture 55.9. A closed Riemannian manifold (M, g) has property
CB if and only if (M, g) is isometric to a compact rank one symmetric
space. In particular, (M, g) has properties CB and SB if and only if
(M, g) is isometric to a round sphere.

In [Laf/Sch], special cases of this conjecture are confirmed under
various additional hypotheses.
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56. Warren Sinnott
Power series that generate class numbers

Let k be a CM field, k+ its totally real subfield, so that k is totally
imaginary and [k : k+] = 2. Let p be a prime, and let K be the basic
Zp-extension of K: then K ⊂ k(µp∞), and k has a unique extension kn

in K of degree pn over k. Let h∗n denote the relative class number of
kn/k

+
n . Then Iwasawa showed that there are integers µ ≥ 0, λ ≥ 0 and

ν such that

(1) ordp(h
∗
n) = µpn + λn+ ν

for n greater than or equal to some integer n0. One way to show this
(not Iwasawa’s original method, which gives more general results) is
to use Hecke’s analytic class number formula and the theory of p-adic
L-functions: these results imply that there is a power series F (T ) ∈
Zp[[T − 1]] such that

(2) h∗n = h∗n0

∏
ζpn

=1

ζpn0 6=1

F (ζ) for n ≥ n0.

The Weierstrass Preparation Theorem implies that we may write F (T ) =
pµQ(T )u(T ), where µ ≥ 0, Q(T ) is a monic polynomial of degree λ con-
gruent to (T − 1)λ mod p, and u(T ) is a unit in Zp[[T − 1]]. From this
one can see that (2) =⇒ (1).

But (2) contains much more information than (1), since it gives a
formula for the whole relative class number. My questions (basically
just questions about formal power series) are:

Question 56.1. What does (2) tell us about class numbers? i.e. what
constraints are imposed on the sequence {h∗n} by the formula (2)?

For example, (2) has the following curious consequence: let (h∗n)′

denote the “prime-to-p” part of h∗n. Then (2) implies that

(3) lim
n→∞

(h∗n)′ exists in Z×p .

H. Kisilevsky69 pointed out that (as with (1)) the limit (3) exists for
the prime-to-p part (in fact for the `-primary part for any ` 6= p) of the
class numbers of any Zp-extension.

Conversely, we can ask:

Question 56.2. What does (2) tell us about F (T )?

For example, if a ∈ Z×p then F (T a) gives the same sequence h∗n, so
F (T ) not completely determined by (2). How much information about
F (T ) is contained in (2)?

69see Pacific J. Math. 1997, Special Issue,(Olga Taussky-Todd: in memoriam),
225–229.
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The latter question is interesting since the “Main Conjecture” of
Iwasawa theory (proved in the 1980s by Wiles) identifies F (T ) — up
to a unit in Zp[[T −1]] — with a characteristic polynomial defined from
the action of Gal(K/k)(' Zp) on the p-primary part of the ideal class
group of K.
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57. Ron Solomon and Radu Stancu
Conjectures on Finite p-Local Groups

Dear Guido,
Congratulations and warmest wishes for the post-retirement con-

tinuation of a glorious career! We know you have been interested in
localization in topology and group theory. A fundamental conjecture
in this context is Alperin’s Weight Conjecture. Here is a formulation
with a topological flavor.

Definition 57.1. Let G be a finite group. A p-chain C of G is a strictly
increasing chain

C : P0 < P1 < · · · < Pn

of p-subgroups of G. We let Ci denote the initial subchain terminating
at Pi. The chain C is radical if P0 = Op(G) and, for each i, Pi =
Op(NG(Ci)).

We denote by R(G) the set of all radical p-chains of G, and by
R(G)/G its orbit space.

Definition 57.2. Fix a prime p. Let φ be an ordinary irreducible
character of the finite group H. The defect d(φ) of φ is the largest

non-negative integer d such that pd divides |H|
φ(1)

.

Definition 57.3. Let G be a finite group and B a p-block of G. For
any p-chain C of G we denote by k(C,B, d) the number of characters
φ ∈ Irr(NG(C)) having defect d(φ) = d and belonging to a p-block
B(φ) of NG(C) such that the induced p-block B(φ)G is B.

Conjecture 57.4. Let p be a prime, G a finite group with Op(G) = 1,
and B a p-block of G which is not of defect 0. Then∑

C∈R(G)/G

(−1)|C|k(C,B, d) = 0.

Next, here is a statement about finite groups. In some sense it is not
a conjecture because Ron is fairly certain it can be proved easily as a
corollary of the Classification of the Finite Simple Groups. The conjec-
ture is that there is an elementary proof, perhaps following from further
advances in the p-modular representation theory of finite groups.

Definition 57.5. Let p be a prime and P a p-group. Then Ω1(P ) is
the subgroup of P generated by all elements of order p.

Conjecture 57.6. Let p be a prime and let G be a finite group having
an abelian Sylow p-subgroup A. Suppose that B is a strongly closed
subgroup of A with respect to G, i.e. if x ∈ B and g ∈ G with xg ∈ A,
then xg ∈ B. Then there exists a normal subgroup N of G having
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a Sylow p-subgroup B∗ such that Ω1(B) = Ω1(B
∗). In particular, if

A = Ω1(A) and B is strongly closed in A with respect to G, then
B ∈ Sylp(N) for some normal subgroup N of G.

Finally, you are probably familiar with the recent work of Broto,
Levi, and Oliver on the theory of so-called p-local groups. The under-
lying structure of a p-local groups are the fusion systems on a finite
p-group P . Here is the definition of a fusion system on P . First let us
start with a more general definition

Definition 57.7. A category F on a finite p-group P is a category
whose objects are the subgroups of P and whose set of morphisms
between the subgroupsQ and R of P , is the set HomF(Q,R) of injective
group homomorphisms from Q to R, with the following properties:
(a) if Q ≤ R then the inclusion of Q in R is a morphism in HomF(Q,R).
(b) for any φ ∈ HomF(Q,R) the induced isomorphism Q ' φ(Q) and
its inverse are morphisms in F .
(c) composition of morphisms in F is the usual composition of group
homomorphisms.

And now the definition of a fusion system:

Definition 57.8. A fusion system F on a finite p-group P is a category
on P satisfying the following properties:
(1) HomP (Q,R) ⊂ HomF(Q,R) for all Q,R ≤ P .
(2) AutP (P ) is a Sylow p-subgroup of AutF(P ).
(3) Every φ : Q → P such that |NP (φ(Q))| is maximal in the F -
isomorphism class of Q, extends to φ̄ : Nφ → P where

Nφ = {x ∈ NP (Q) | ∃ y ∈ NP (φ(Q)), φ(xu) = yφ(u)∀u ∈ Q} .
Axiom (2) is saying that P is a ’Sylow p-subgroup’ of F and the

extension in Axiom (3) is equivalent to saying that any p-subgroup
can be embedded by conjugation in a Sylow p-subgroup. In particular,
if G is a finite group, p is a prime divisor of |G|, and P ∈ Sylp(G),
then the morphisms given by conjugation by elements of G between
the subgroups of P determine a fusion system FG(P ) on P .

We say that a fusion system is exotic if it does not arise in this
way. There is some dispute about the correct definition of a normal
subobject in this theory. Here is Markus Linckelmann’s definition of a
normal subsystem. First let’s introduce the notion of strongly F-closed
subgroups.

Definition 57.9. Let F be a fusion system on a finite p-group P and Q
a subgroup of P . We say that Q is strongly F-closed if for any subgroup
R of Q and any morphism φ ∈ HomF(R,P ) we have φ(R) ≤ Q.

And now the notion of normal fusion subsystem.

Definition 57.10. Let F be a fusion system on a finite p-group P and
F ′ a fusion subsystem of F on a subgroup P ′ of P . We say that F ′
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is normal in F if P ′ is strongly F -closed and if for every isomorphism
φ : Q→ Q′ in F and any two subgroups R, R′ of Q ∩ P ′ we have

φ ◦ HomF ′(R,R
′) ◦ φ−1 ⊆ HomF ′(φ(R), φ(R′)) .

Here is a conjecture on normal fusion systems:

Conjecture 57.11. Let F be a fusion system on P and P ′ a strongly
F-closed subgroup of P . Then there exists a normal fusion subsystem
F ′ of F on P ′.

A simple fusion system is a fusion system that has no non-trivial
normal subsystems. In particular, if G is a finite simple group which
does not have a proper strongly p-embedded subgroup, then FG(P ) is
a simple fusion system.

When p is odd, it seems to be fairly easy to construct examples of
exotic simple p-local groups. On the other hand when p = 2, the only
known exotic examples live in a single infinite family, FSol(q), which
may be regarded as the analogue of finite Chevalley groups with respect
to the exotic 2-compact group of Dwyer and Wilkerson.

Conjecture 57.12. The family FSol(q) contains all of the exotic simple
2-local groups.

This conjecture is hard to believe. On the other hand, it has thus
far been impossible to dream up other examples. It is conceivable that
it could be proved by a lengthy and elaborate analysis in the vein of
the traditional 2-local analysis of finite simple groups used in the proof
of the Classification Theorem. It would be much more interesting if
homotopy-theoretic tools could be brought to bear to prove this re-
sult. That would really give hope for new and exciting applications of
topology to finite group theory.

Another source of examples for fusion systems are the fusion systems
coming from p-blocks of group algebras, given by the conjugations be-
tween the Brauer pairs in a maximal Brauer pair of the p-block. Such
examples are called Brauer categories. Here’s a natural question one
can ask.

Question 57.13. Are there Brauer categories which are exotic fusion
systems?

It is pretty hard to check that a given fusion system is not a Brauer
category. Up to now, the only known way to do it is by reduction to
Brauer categories of quasisimple groups and then by using the clas-
sification of finite simple groups. There are examples of embedded
fusion systems where the minimal and the maximal ones come from
finite groups and the intermediate ones are exotic. It is not yet known
whether these exotic fusion systems are Brauer categories.
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58. Olympia Talelli
On algebraic characterizations for the finiteness of the

dimension of EG.

In [K-M]70 the following theorem was proved:

Theorem 58.1. If G is an HF-group of type FP∞ then G admits a
finite dimensional model for EG.

The class HF was introduced by P. H. Kropholler in [K]71 and it
is defined as the smallest class of groups containing the class of finite
groups, with the property: if a group G admits a finite dimensional
contractible G-CW-complex with all cell stabilizers in HF then G is in
HF.

This theorem, especially its proof, was the motivation for defining
groups of type Φ in [T] 72 and propose those as the ones which admit
a finite dimensional model for EG.

Definition 58.2. [T]: A group G is said to be of type Φ if it has the
property that for every ZG-module M, projdimZGM < ∞ if and only
if projdimZHM <∞ for every finite subfroup of H of G.

Conjecture 58.3. [T] The following statements are equivalent for a
group G:

(1) G admits a finite dimensional model for EG.
(2) G admits a finite dimensional contractible G-CW-complex with

finite cell stabilizers.
(3) G is of type Φ.
(4) spliZG<∞.
(5) silpZG<∞.
(6) findimZG<∞.

The algebraic invariants spliZG and silpZG were defined in [G-G]73

silpZG is the supremum of the injective lengths of the projective ZG-
modules and spliZG is the supremum of the projective lengths of the
injective ZG-modules. It was shown in [G-G] that silpZG≤spliZG, and
that if spliZG< ∞ then spliZG=silpZG. The finitistic dimension of
ZG, findimZG, is the supremum of the projective dimensions of the
ZG-modules of finite projective dimension.

Now (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6). It follows from Theorem
58.1 that (6)⇒ (1) if G is an HF -group with a bound on the orders of

70[K-M] P. H. Kropholler and G. Mislin, Groups acting on finite dimensional
spaces with finite stabilizers, Comment. Math. Helv. 73 (1998), 122-136.

71[K] P. H. Kropholler On groups of type FP∞, J. Pure Appl. Algebra 90 (1993),
55-67.

72[T] On groups of type Φ , preprint 2005.
73[G-G] T.V. Gedrich and K.W. Gruenberg, Complete cohomological functors

on groups, Topology and its Applications 25 (1987) 203-223.
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the finite subgroups. Moreover in [T] it is shown that (6)⇒ (1) if G is
a torsion-free locally soluble group.
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59. Alain Valette
Short exact sequences and a-T-menability

A locally compact, σ-compact group is a-T-menable, or has the
Haagerup property, if it admits a metrically proper isometric action on
a Hilbert space. The class of a-T-menable groups is a huge class, con-
taining amenable groups, free groups, surface groups, Coxeter groups,
and much more...(see CCJJV 74 for more information on that class).
The interest of this class stems from a remarkable result by N. Higson
and G. Kasparov 75, that a-T-menable groups satisfy the strongest pos-
sible form of the Baum-Connes conjecture, namely the Baum-Connes
conjecture with coefficients.

In presence of an interesting class of groups, it is a natural ques-
tion to ask whether it is stable under short exact sequences. For a-T-
menability, this is well-known not to be the case: e.g. Z2 and SL2(Z)
are a-T-menable, but the semi-direct product Z2 o SL2(Z) is not, be-
cause of the relative property (T) with respect to the normal subgroup.

Question 59.1. Let 1→ N → G→ Q→ 1 be a short exact sequence
of locally compact groups, with N and Q a-T-menable. Under which
conditions is G a-T-menable?

For example, this is known to be the case if Q is amenable, as shown
in CCJJV. Let us single out the case of central extensions in Question
59.1:

Conjecture 59.2. Let 1 → Z → G → Q → 1 be a central extension.
If Q is a-T-menable, then so is G.

Some evidence for that conjecture appears in CCJJV (in particular
the case of the universal cover of SU(n, 1)).

When H, Q are (non-trivial) countable groups, recall that the wreath
product H oQ is the semi-direct product N oQ, where N = ⊕QH is a
direct sum of copies of H indexed by Q, and Q acts on N by shifting
indices.

Conjecture 59.3. Assume that H and Q are a-T-menable. Then so
is H oQ.

Evidence for this conjecture comes from a result of M. Neuhauser
76: if H, Q are a-T-menable, then H oQ has no infinite subgroup with
the relative property (T). Admittedly, this evidence is limited in view
of a recent construction by Y. de Cornulier 77: there exists countable

74P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette, Progress in Math-
ematics (Boston, Mass.). 197. Basel: Birkhaüser (2001).

75Invent. Math. 144, No.1, 23-74 (2001).
76Math. Z. 251, No.1, 167-177 (2005).
77J. Lie Theory 16, 67-82, 2006.
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groups (actually S-arithmetic lattices) which are not a-T-menable, and
do not contain any infinite subgroup with the relative property (T). As
a particular case of Conjecture 59.3, we single out what seems to be
the first case to look at:

Conjecture 59.4. Let F2 denote the free group on 2 generators, and
let H be a (non-trivial) finite group. Then H o F2 is a-T-menable.

Dear Guido, my best wishes for a happy and active retirement!
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60. Kalathoor Varadarajan
A realization problem

I consider myself singularly fortunate in knowing Guido personally as
well as mathematically. He belongs to the rare group of people who are
simultaneously outstanding as mathematicians and perfect gentlemen.
I wish him a long, happy and mathematically productive retired life.

In his groundbreaking papers78, C.T.C. Wall associated with each
(always assumed 0-connected) finitely dominated space X an element
w(X) in K̃0(Z(π)) where π = π1(X) and proved that X is of the ho-
motopy type of a finite CW-complex if and only if w(X) = 0. Also
w(X) is an invariant of the homotopy type of X. In subsequent lit-
erature w(X) is referred to as the finiteness obstruction (alternatively
as the Wall obstruction) of X. Another major result proved by Wall
asserts that given any finitely presented group π and any element x
in K̃0(Z(π)), there exists a finitely dominated CW-complex X with
π1(X) isomorphic to π and w(X) = x in K̃0(Z(π)). Using Dock Sang
Rim’s result79 that K̃0(Z(πp)) for any prime p is isomorphic to the ideal
class group Cl(Z[ω]), where πp denotes a cyclic group of order p and
ω = exp(2πi/p) and the fact that Cl(Z[ω]) is not zero when p = 23,
Wall shows that there exist finitely dominated CW-complexes which
are not of the homotopy type of a finite CW-complex. This settled a
famous problem of J.H.C. Whitehead 80 in the negative.

Guido is the first person who started studying the Wall obstruction
of finitely dominated nilpotent spaces 81. In his 1976 work he proved
that w(X) = 0 for any finitely dominated nilpotent space with π1(X)
infinite. In his 1975 work he showed that if X is a finitely dominated
nilpotent space with π1(X) finite cyclic, then w(X) has to satisfy cer-
tain restrictions. Inspired by his results, I extended his 1975 results
to finitely dominated nilpotent spaces with finite abelian fundamental
groups. My result82 appeared in 1978. For any nilpotent group π, let
Z(π) denote a maximal order in Q(π) containing Z(π) and D(Z(π))
denote the kernel of

j∗ : K̃0(Z(π))→ K̃0(Z(π)).

78Finiteness conditions for CW-complexes, Ann. of Math.81 (1965), 57-69,
and Finiteness conditions for CW-complexes ll, Proc. Royal Soc. London Ser.
A295(1966),129-139.

79Modules over finite groups, Ann. Math.69 (1959), 700-712.
80Combinatorial Homotopy l and II, Bull. AMS.55(1949), 213-240 and 453-496.
81G. Mislin: Wall obstruction for nilpotent spaces, Topology14(1975) 311-317.

and Finitely dominated nilpotent spaces, Ann. of Math.103 (1976) 547-556.
82Finiteness obstruction for nilpotent spaces, J. Pure and Appl. Alg.12 (1978),

137-146.
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In the joint paper83 in 1979, Guido and myself showed that for any
finitely dominated nilpotent space X with a finite (necessarily nilpo-
tent) fundamental group π , the Wall obstruction w(X) satisfies the
restriction that w(X) is in D(Z(π)). This considerably strengthened
the result in 1978.

As stated earlier in this article, for any finitely presented group π
and any element x in K̃0(Z(π)), there exists a finitely dominated CW-
complex X with π1(X) = π and w(X) = x (Wall’s work in 1965, 1966).
This suggests the following

Conjecture 60.1. Let π be a finite nilpotent group and x any element
in D(Z(π)). Then there exists a finitely dominated nilpotent space X
with π1(X) = π and w(X) = x.

In this article, I have concentrated on just one aspect of Guido’s
work. His work is very profound and has influenced the development
of Topology in many ways.

Author’s Adress:
Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta, T2N1N4, Canada
e-mail:varadara@math.ucalgary.ca

83The finiteness obstructions for nilpotent spaces lie in D(Z(π)), Invent.
Math.53(1979), 185-191.
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61. Clarence Wilkerson
Finiteness properties of the monoid of self-homotopy
equivalences of a simply connected finite CW complex

Roughly speaking, the monoid Aut(X) plays a role in the homo-
topy category for a simply connected CW complex X that the group
Isom(M) of isometries plays in differential geometry for a compact
Riemannian manifoldM . The latter is a compact Lie group and thus
possesses many finiteness properties. The first analogous properties for
Aut(X) are due to Sullivan and Wilkerson (70’s) and Lannes-Schwartz-
Zarati (80’s):

1) π0(Aut(X) is commensurable to an arithmetic group.
2) H∗(Aut(X),Fp) is a locally finite module over the Steenrod algebra.

These are weak analogues of π0(G) is finite and G is a finite CW com-
plex. It’s therefore natural to ask what properties the classifying space
BAut(X) might have in common with BG, for G a compact Lie group.
In light of the arithmetic nature of π0, it suffices to study this question
for those maps homotopic to the identity, AutZ1(X). The first example
is encouraging:

(Milgram and F. Cohen): Let BSO(n) → BAut1(S
n−1) be induced

from the forgetful map. The induced map on mod 2 cohomology is an
isomorphism modulo nilpotent elements.

Dwyer-Wilkerson translated this using the T-functor:

Up to FHE, the only actions of Z/2Z on Sn−1 are linear actions.

The translation is as follows. Dwyer and Kan have shown that ac-
tions of a group G on X correspond to the Borel fibrations X →
EG×G X → BG. These, up to FHE, are classified by maps of BG to
BAut(X), which in the case G = Z/2Z can be calculated using T and
the information provided by Milgram-Cohen.

However, efforts to find similar phenomena in general failed for several
years. Finally, Jeff Smith and Clarence Wilkerson produced a decisive
example:

There exists a s.c. finite CW complex X with infinitely many dis-
tinct (up to FHE) Z/2Z actions.

The X was constructed as a suspension with infinitely many non-
homotopy equivalent desuspensions. The example has a corollary:
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There exists a s.c. finite CW complex X such that H∗(BAut1(X),F2)
is not finite modulo nilpotents, decomposables, and the action of the
Steenrod algebra.

This seems to eliminate the possibility in general of nice finiteness
properties for BAut1(X).

However, recently in work of Dwyer, Smith, and Wilkerson, an at-
tractive candidate has emerged. Recall that a group action G×X → X
is deemed effective if only the identity in G moves no point of X. That
is, for any cyclic subgroup C of G, the fixed point set XC 6= X.

One can define a homotopical version of this for a p-group G by re-
quiring that fot Z/pZ → G, the induced fibration pulled back from the
Borel fibration over BG to BZ/pZ not be trivial. (This is equivalent
to the homotopy fixed point set XhZ/pZ 6= X).

Conjecture: If X is a s.c. finite CW complex, then there exists NX ≥ 0
such that if E is an elementary abelian p-group and rank(E) > NX ,
then E has no homotopocally effective action on X.

We believe that work of Mann (60’s) with Smith theory can be trans-
lated and applied to this in the case that X is a mod p Poincaré duality
complex.
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62. Kevin Wortman
Finiteness properties of function-field-arithmetic groups

Let K be a global function field, and S a finite nonempty set of
pairwise inequivalent valuations on K. We let OS ≤ K be the corre-
sponding ring of S-integers, and we let G be a simple K-group. For
any v ∈ S, we let Kv be the completion of K with respect to v.

The finiteness properties of function-field-arithmetic groups such as
G(OS) have been of interest for at least the past 47 years. Some of
that interest has fallen on which of these groups are of type FPm for
a given m. For example, for which m is it true that SLn(Fq[t]) is of
type FPm where Fq[t] denotes a polynomial ring with one variable and
coefficients in a finite field with q elements.

We recall that a group Γ is of type FPm if there exists a partial
projective resolution

Pm → Pm−1 → · · · → P1 → P0 → Z→ 0

of finitely generated ZΓ modules, where the action of ZΓ on Z is trivial.
All of the evidence thus far indicates the existence of a solution for

the following

Conjecture. With G(OS)as above and with k =
∑

v∈S rankKv(G), the
arithmetic group G(OS) is of type FPm if and only if either rankK(G) =
0 or k > m.

For example, according to the above conjecture SLn(Fq[t]) should
be of type FP(n−2) but not of type FP(n−1). In fact this was shown
independently by Abels and Abramenko for large values of q.

Plenty of other evidence exists to support the conjecture in gen-
eral including a proof of the “only if” implication; see the papers of
Abels, Abramenko, Behr, Bux-Wortman, Hurrelbrink, Keller, Kneser,
Lubotzky, McHardy, Nagao, O’Meara, Rehmann-Soulé, Serre, Split-
thoff, and Stuhler [Abl], [Abr 1], [Abr 2], [Abr 3], [Be 1], [Be 2], [Be 3],
[Be 4], [Bu-Wo], [Hu], [Ke], [Lu], [McH], [Na], [OM], [R-S], [Se 1], [Se
2], [Spl], and [St ], [St 2].

References

[Abl] Abels, H., Finiteness properties of certain arithmetic groups in
the function field case. Israel J. Math., 76 (1991), 113-128.

[Abr 1] Abramenko, P., Endlichkeitseigenschaften der Gruppen SLn(Fq[t]).
Thesis, Frankfurt (1987).

[Abr 2] Abramenko, P., Finiteness properties of Chevalley groups
over Fq[t]. Israel J. Math., 87 (1994), 203-223.

[Abr 3] Abramenko, P., Twin buildings and applications to S-arithmetic
groups. Lecture Notes in Mathematics, 1641. Springer-Verlag, Berlin,
(1996).



GUIDO’S BOOK OF CONJECTURES 133

[Be 1]Behr reduction Behr, H., Endliche Erzeugbarkeit arithmetis-
cher Gruppen über Funktionenkörpern. Invent. Math. 7 (1969), 1-32.

[Be 2] Behr, H., SL3(Fq[t]) is not finitely presentable. Proc. Sympos.
“Homological group theory” (Durham 1977). London Math. Soc.,
Lecture Notes Ser. 36, 213-224.

[Be 3] Behr, H., Arithmetic groups over function fields. I. A complete
characterization of finitely generated and finitely presented arithmetic
subgroups of reductive algebraic groups. J. Reine Angew. Math. 495
(1998), 79-118.

[Be 4] Behr, H., Higher finiteness properties of S-arithmetic groups
in the function field case I. Preprint.

[Bu-Wo] Bux, K.-U., and Wortman, K., Finiteness properties of
arithmetic groups over function fields. Preprint.

[Hu] Hurrelbrink, J., Endlich präsentierte arithmetische Gruppen
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Editor’s comment

Dear Guido,

It has been an honor and a lot of fun to edit this gift for you. I am
really grateful to the contributors and even more to Gwynyth, Henry,
Ian, Mike and Tadeusz for their help, for the enthusiastic support this
idea received and for all the efforts put at such short notice. It was
really cool (but not at all a surprise) to see that so many people are
that fond of you and your work.

Most likely, very important people are missing as we forgot a few,
some had aggressive spam filters that directed our mass mailings to
the trash and finally others were already gone on holiday: some lack
of organization made us start the project kind of late (less than two
months ago)!

Somehow I feel that the present volume is a beginning rather than a
finished thing, let’s see...

Indira


