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CONNECTED LIE GROUPS AND PROPERTY RD

I. CHATTERJI, CH. PITTET, and L. SALOFF-COSTE

Abstract
For a locally compact group, the property of rapid decay (property RD) gives a
control on the convolutor norm of any compactly supported function in terms of its
L2-norm and the diameter of its support. We characterize the Lie groups that have pro-
perty RD.

0. Introduction
The property of rapid decay (property RD) emerged from the work of U. Haagerup in
[15] and was first studied systematically by P. Jolissaint in [21], mostly in the context
of finitely generated groups. Property RD gives a control on the convolutor norm of
any compactly supported function in terms of its L2-norm and the diameter of its
support. Before Haagerup’s work, C. Herz stated and proved in [17, Théorème 1]
that connected semisimple real Lie groups with finite center have property RD. (Of
course, he did not use this terminology.) The terminology rapid decay comes from
the fact that a group has property RD if and only if any rapidly decaying function is
an L2-convolutor (see Definition 2.3 and Lemma 2.4). Property RD is useful in the
theory of C*-algebras. Connes and Moscovici used it in [7] to prove the Novikov
conjecture for word hyperbolic groups, and V. Lafforgue used it in [25] to prove the
Baum-Connes conjecture for some groups having property (T). Property RD is also
relevant to the study of random walks on nonamenable groups. This is used in Sec-
tion 7 to relate property RD to Varopoulos’s work [37] and developed further
in [6].

The main result of this article is a precise algebraic description of those connected
(real) Lie groups that have property RD.
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THEOREM 0.1 (Main theorem)
Let G be a connected Lie group with Lie algebra g and universal cover G̃. The
following are equivalent:
(a) G has property RD;
(b) g = s × q, where s is semisimple and q is an algebra of type R;
(c) G̃ = S̃ × Q̃, where the connected Lie groups S̃ and Q̃ are, respectively,

semisimple and of polynomial volume growth.

This result is extended in Theorem 7.4 to compactly generated almost connected
groups. The equivalence between Theorem 0.1(b) and (c) is well known (see, e.g.,
[14], [19], [36]). That Theorem 0.1(a) implies (b) follows from Varopoulos’s work
in [37]; this is explained in Section 7. That Theorem 0.1(c) implies (a) occupies a
large portion of this article. A short description of the article is as follows. Notation
is set in Section 1. Sections 2 and 3 discuss property RD in the context of locally
compact groups (see also [21] and [20]). In Section 4 we consider a locally compact
unimodular group G = PK, where P is amenable and K is compact. Theorem 4.4
gives a necessary and sufficient condition for property RD in terms of the growth
of an elementary spherical function of G. Theorem 4.4, together with a fundamental
estimate due to Harish-Chandra, implies property RD for semisimple Lie groups with
finite center and for semisimple k-groups over a local field k. Section 5 establishes the
stability of property RD under some central extensions, a result proved by Jolissaint
[21] in the case of finitely generated groups. Section 6 shows that, referring to Theorem
0.1, (c) implies (a).

1. Basic notation
Throughout this article all groups are locally compact, Hausdorff, and separable. Let
Cc(G) denote the algebra of all continuous functions on the group G with values in
C and with compact support. Let ν be a left Haar measure on G (unique up to a
multiplicative constant), and define the modular function m by ν(Bg) = m(g)ν(B)
(for any Borel set B and g ∈ G). Let L2(G) be the Hilbert space L2(G, ν) equipped
with the inner product 〈f, g〉 = ∫

G
f (x)g(x) dx.

1.1. Convolutions
For details on the following, see [18, Chapter V] and [11, Paragraphe XIII]. For
f, g ∈ L1(G), the convolution f ∗ g ∈ L1(G) is defined as

f ∗ g(x) =
∫

G

f (xy)g(y−1) dy =
∫

G

f (y)g(y−1x) dy.
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Let

f ∗(x) = 1

m
(x)f (x−1)

be the canonical isometric involution of L1(G). Let B(L2(G)) be the involutive Banach
algebra of bounded operators on L2(G). Recall that if f ∈ L1(G) and g ∈ L2(G), the
inequality ‖f ∗ g‖2 ≤ ‖f ‖1‖g‖2 shows that left convolution by f defines a bounded
operator λG(f ) on L2(G) and that the representation

λG : L1(G) → B
(
L2(G)

)
is a ∗-homomorphism; that is, λG(f ∗) = λG(f )∗. (We write λ in place of λG whenever
no confusions can arise.) The formula

ι(f )(x) = m(x)−1/2f (x−1)

defines an automorphism of L2(G) which is an isometric involution. If f is a measur-
able function on G such that∫

G

m(y)−1/2|f (y)| dy < ∞,

write ρG(f ) or ρ(f ) for the right convolution by f . It is easy to check that

ρ(f ) = ι ◦ λ
(
ι(f )

) ◦ ι. (1.1)

This is an element of B(L2(G)) because

‖ρ(f )‖2→2 = ∥∥λ
(
ι(f )

)∥∥
2→2 ≤ ‖ι(f )‖1 =

∫
G

m(y)−1/2|f (y)| dy < ∞. (1.2)

The right convolution should not be confused with the extension to L1(G) of the
unitary right regular representation on L2(G),(

ρ(t)f
)
(x) = m(x)1/2f (xt), t ∈ G, f ∈ L2(G),

of G on L2(G, ν).

1.2. Length functions
A length function on a locally compact group G is a Borel map L : G → R

+

satisfying L(1) = 0, L(gh) ≤ L(g) + L(h), and L(g) = L(g−1), g, h ∈ G. We set
BL(r) = {g ∈ G : L(g) ≤ r}. A length function L on G is locally bounded if, for
any compact set U , MU = sup{L(u) : u ∈ U} < ∞. If G contains a compact set K
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satisfying G = ⋃
n∈N

Kn, we say that G is compactly generated. If G is compactly ge-
nerated and K is a compact symmetric generating set, the word length on G associated
to K is defined as

LK (g) = inf{n : g ∈ Kn}, LK (1) = 0.

Such length functions are locally bounded. Indeed, note that there exists an integer NIn the first
paragraph of
Sec. 1.2, please
identify what
“11” in [40]
represents.

such that KN has positive Haar measure (otherwise, G would have measure 0) and
thus KNK−N = K2N is a neighborhood of the identity (see, e.g., [40, Chapter III,
11]). It follows that the interior of K2N+1 generates G. This implies that LK is locally
bounded.

Fix a locally bounded length function L, and fix a compact symmetric generating
set K . For g = s1 · · · sn with si ∈ K and n minimal, we have

L(g) = L(s1 · · · sn) ≤
n∑

i=1

L(si) ≤ MKLK (g).

Hence, word-length functions are all comparable to each other (we sometimes talk
about “the” word length without specifying K), and they are, in a sense, the largest
locally bounded length functions on G. The formula

d(g, h) = LK (g−1h)

defines a metric (with integer values) on G, and the action of G on itself by left
translations is free and isometric. Further examples of length functions (with real
values) can be obtained by letting G act continuously by isometries on a metric space
(X, d) and by setting L(g) = d(x0, g(x0)) for some base point x0 ∈ X. Such length
functions can be very different from word lengths and are not always proper.

If G is a connected Lie group, any left-invariant Riemannian metric induces
a locally bounded length function on G by letting L(g) be the geodesic distance
between g and the identity element. If L is such a Riemannian length function and
K is as in the previous paragraph, then there are constants c, C ∈ (0,∞) such that
cLK (g) ≤ L(g) ≤ CLK (g) for all for g outside a large enough compact neighborhood
of the identity. In words, at large scale, Riemannian and word-length functions are
always comparable on G (see, e.g., [39]).

A compactly generated group has polynomial volume growth if, for any compact
symmetric generating set K , there exist C,D > 0 such that ν(BLK

(r)) ≤ CrD for all
r ≥ 1.

2. Property RD
In what follows, by support of a measurable function, we mean its essential support.
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Definition 2.1
Let L be a locally bounded length function on G. Let E be a subset of L2(G). We say
that the pair (G,L) has property RDE if there exist two constants C,D ≥ 0 such that
for any function f ∈ E with compact support in BL(R), R ≥ 1, we have

‖λ(f )‖2→2 ≤ CRD‖f ‖2. (2.3)

For simplicity, when E = L2(G), we write RD for RDL2(G).

Definition 2.2
Let G be compactly generated. We say that G has property RD if (G,LK ) has property
RD for some (equivalently, any) compact symmetric generating set K .

Similar definitions with λ(f ) replaced with ρ(f ) lead to the same concepts. This can
be proved directly using (1.1) or deduced from (1.1) and [20, Theorem 2.2], where Ji
and Schweitzer prove that property RD implies unimodularity.

Definition 2.3
Let L be a length function on a locally compact group G. For k ≥ 0, define

Hk
L(G) =

{
f ∈ L2(G) :

∫
G

(
1 + L(x)

)2k|f (x)|2 dx < ∞
}
,

and define H∞
L (G) = ⋂

k≥0 Hk
L(G). The space H∞

L (G) is called the space of rapidly
decaying functions.

The space H∞
L (G) ⊆ L2(G) is a Fréchet space for the projective limit topology

induced by the sequence of norms ‖f ‖2,L,k = ‖(1 + L)kf ‖2. Recall that the reduced
C∗-algebra C∗

r (G) of a locally compact group G is the operator norm closure of
compactly supported continuous functions on G, viewed as acting on L2(G) via the
left regular representation (i.e., as λ(f ), where f ∈ Cc(G)). In the following lemma,
we collect equivalent definitions of property RD. In particular, it implies that Definition
2.1 of property RD coincides with the one given by Jolissaint in [21] and used by Ji
and Schweitzer in [20].

LEMMA 2.4
Let G be a locally compact group, and let L be a locally bounded length function on
G. The following are equivalent:
(1) (G,L) has property RD;
(2) (G,L) has property RDE for E = Cc(G);
(3) (G,L) has property RDE for E = {f ∈ Cc(G) : f = mf ∗};
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(4) there are k > 0 and C > 1 such that, for any f ∈ Cc(G),

‖λ(f )‖2→2 ≤ C‖(1 + L)kf ‖2;

(5) H∞
L (G) ⊆ C∗

r (G).

The proofs are elementary or easily adapted from the literature.

3. Elementary stability results
Property RD is not stable under arbitrary extensions. (Abelian groups have property
RD, but not all solvable groups have it; see Proposition 4.1.) The next result says
that property RD is stable under direct products (for some central extensions, see
Proposition 5.5).

LEMMA 3.1
Let G1,G2 be compactly generated groups equipped with length functions L1, L2. Set
G = G1 × G2, and set L = L1 + L2. Then (G,L) has property RD if and only if
(G1, L1) and (G2, L2) do.

Proof
For f ∈ L2(G) compactly supported, define

f1(x) =
( ∫

G2

|f (x, y)|2 dy
)1/2

∈ L2(G1).

Then ‖f ‖L2(G) = ( ∫
G1

|f1(x)|2 dx
)1/2 = ‖f1‖L2(G1). Now assume that Gi has property

RD with constants Ci,Di , i = 1, 2. Let f ∈ L2(G) be supported in the ball of radius
R > 1 for the length L = L1 + L2. Fixing x1, write∫

G2

∣∣∣ ∫
G1×G2

f (y1, y2)g(y−1
1 x1, y

−1
2 x2) dy1 dy2

∣∣∣2
dx2

≤
( ∫

G1

( ∫
G2

∣∣∣ ∫
G2

f (y1, y2)g(y−1
1 x1, y

−1
2 x2) dy2

∣∣∣2
dx2

)1/2
dy1

)2

≤ C2
2R

2D2

∣∣∣ ∫
G1

f1(y1)g1(y−1
1 x1) dy1

∣∣∣2
,

where the first inequality is due to Minkowsky (see [32, Theorem 3.29]) and the last
inequality follows from property RD on (G2, L2). Since f1 is supported in BL1 (R),
integrating with respect to x1 and using property RD on (G1, L1) yields

‖λ(f )(g)‖L2(G) ≤ C2R
D2‖λ(f1)(g1)‖L2(G1) ≤ CRD‖f ‖L2(G)‖g‖L2(G),

where C = C1C2 and D = D1 + D2.
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Conversely, assume that G has property RD. Let f1 ∈ Cc(G1) be supported in
BL1 (R) with R ≥ 1. Fix a compact neighborhood U of 1 ∈ G2, and let MU = supU L2.
Define f ∈ L2(G) by

∀ (y1, y2) ∈ G, f (y1, y2) = f1(y1)1U (y2),

where 1U denotes the characteristic function of U . As ‖λ(f )‖2→2 ≥
‖λ(1U )‖2→2‖λ(f1)‖2→2 with CU = ‖λ(1U )‖2→2 < ∞, we obtain

‖λ(f1)‖2→2 ≤ C−1
U ‖λ(f )‖2→2 ≤ C−1

U C(MU + R)D‖f ‖L2(G)

≤ C ′RD‖f1‖L2(G1),

where C,D are the constants in property RD on G. �

Property RD is not closed under passing to general subgroups, but the next lemma
shows that it passes to open subgroups.

LEMMA 3.2
Let (G,L) have property RD, and take H < G to be an open subgroup. Then (H,L′)
has property RD, where L′ is the length function L restricted to H .

Proof
Since H is open, the Haar measure on H is the restriction of the one on G. Let
f ∈ L2(H ) be supported on BL′(R) for some R ≥ 1. Extend f to f̃ ∈ L2(G) by
setting f̃ = 0 on G \ H , so that ‖f ‖L2(H ) = ‖f̃ ‖L2(G) and f̃ is supported on BL(R).
Then

‖λ(f )‖2→2 ≤ ‖λ(f̃ )‖2→2 ≤ CRD‖f̃ ‖L2(G) = CRD‖f ‖L2(H ).

This shows that (H,L′) has property RD. �

Property RD is not always inherited by cocompact closed subgroups. (In fact, we see
that a noncompact semisimple group with Iwasawa decomposition NAK has property
RD, whereas NA does not). The following result is useful to treat almost connected
groups.

LEMMA 3.3
Let G be a compactly generated group, and let H be a closed finite-index subgroup.
Then G has property RD if and only if H does.
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Proof
Since H has finite index in G, it is an open subgroup. Hence, if G has property RD,
then so does H by Lemma 3.2.

Conversely, first note that if f, g ∈ L2(G) have disjoint compact supports con-
tained in the ball of radius R with center the identity and satisfy (2.3) with constants
C and D, then

‖λ(f + g)‖2→2 ≤
√

2CRD(‖f ‖2
2 + ‖g‖2

2)1/2 =
√

2CRD‖f + g‖2
2.

For t ∈ G, f ∈ L2(G), write (λ(t)f )(x) = f (t−1x) for the left regular representa-
tion. As we may assume that all groups are unimodular in the lemma, the right regular
unitary representation on L2(G, ν) is just (ρ(t)f )(x) = f (xt). Hence,

‖λ(f )‖2→2 = ‖λ(f ) ◦ λ(t−1)‖2→2 = ∥∥λ
(
ρ(t)f

)∥∥
2→2.

Also, supp(ρ(t)f ) = supp(f )t−1.
Hence, if we choose a set T ⊂ G of right H -coset representatives (which is finite

by hypothesis) and consider the orthogonal decomposition L2(G) = ⊕
t∈T L2(Ht),

we see that it is enough to prove the RD inequality for λ(f ) when f ∈ L2(H ). But in
this case, λ(f ) preserves each orthogonal subspace L2(Ht), and if g ∈ L2(Ht), then

‖λG(f )g‖L2(G) = ∥∥λH (f |H )
(
ρ(t)g

)|H∥∥
L2(H ).

As ‖g‖L2(G) = ‖(ρ(t)g)|H‖L2(H ), ‖f ‖L2(G) = ‖f |H‖L2(H ), and as the restriction to
the finite-index subgroup H of a length function on G is bounded below by a fixed
multiple of a length function on H , the proof is finished. �

The following lemma is used later to extend our results on connected Lie groups to
almost connected compactly generated groups.

LEMMA 3.4
Let 1 → K → G → Q → 1 be a short exact sequence of compactly generated
groups, and assume that K is compact. Then G has property RD if and only if Q has
property RD.

Before proving this lemma, we collect some facts that are used in the proof and again
in Section 4. We start with a classical observation used, for instance, in the study of
the Kunze-Stein phenomenon (see [8]). The proof is included for the convenience of
the reader.
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LEMMA 3.5
Let G be a locally compact group, and let K be a compact subgroup. Let f ∈ Cc(G).
We set

fK (x) =
( ∫

K

|f (xk)|2 dk
)1/2

, KfK (x) =
( ∫

K

∫
K

|f (kxk′)|2 dk dk′
)1/2

,

where dk denotes the normalized Haar measure on K . Then fK, KfK ∈ L2(G),
‖fK‖2 = ‖KfK‖2 = ‖f ‖2, and

‖λ(f )‖2→2 ≤ ‖λ(fK )‖2→2, ‖λ(f )‖2→2 ≤ ‖λ(KfK )‖2→2,

‖ρ(f )‖2→2 ≤ ‖ρ(fK )‖2→2, ‖ρ(f )‖2→2 ≤ ‖ρ(KfK )‖2→2.

Proof
The equality of the norms of fK, KfK , and f follows from the fact that m(k) = 1 for
k ∈ K . (Indeed, m(kn) = m(k)n is bounded and bounded away from zero for all n ∈ N

since K is compact.) Concerning convolutor norms, the equality in (1.2), the fact that
λ is a ∗-homomorphism, and the identity (ι(f )∗)K = ι(fK )∗ easily show that it suffices
to treat left convolutors. For any function ξ ∈ Cc(G) and any x ∈ G, k ∈ K , we have

f ∗ ξ (x) =
∫

G

f (xy)ξ (y−1) dy =
∫

G

f (xyk)ξ (k−1y−1) dy.

Hence,

|f ∗ ξ (x)| =
∣∣∣ ∫

K

∫
G

f (xyk)ξ (k−1y−1) dy dk

∣∣∣
≤

∫
G

( ∫
K

|f (xyk)|2 dk
)1/2( ∫

K

|ξ (ky−1)|2 dk
)1/2

dy

=
∫

G

fK (xy)ξK (y−1) dy = fK ∗ ξK (x).

It follows that ‖λ(f )‖2→2 ≤ ‖λ(fK )‖2→2. Set

Kf (x) =
( ∫

K

|f (kx)|2 dk
)1/2

,

and check that (f ∗)K = (Kf )∗. Hence, we obtain

‖λ(f )‖2→2 = ‖λ(f ∗)‖2→2 ≤ ∥∥λ
(
(f ∗)K

)∥∥
2→2 = ∥∥λ

(
(f ∗)∗K

)∥∥
2→2

= ‖λ(Kf )‖2→2 ≤ ∥∥λ
(
(Kf )K

)∥∥
2→2 = ‖λ(KfK )‖2→2,

as desired. �
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We recall some elementary facts concerning operators on homogeneous spaces (for
details, see, e.g., [33]). Let G be a locally compact group that acts continuously and
transitively on a space X with compact stabilizers. Fix o ∈ X, and let K denote
the stabilizer of o so that X = G/K . For x ∈ X, let x̄ be an element of G so that
x̄o = x. Let p(x, y) be a locally integrable nonnegative kernel that is G-invariant (i.e.,
p(gx, gy) = p(x, y) for any g ∈ G). Let dx be the G-invariant measure on X so that
dg = dx dk, where dk is the normalized Haar measure on K . Set

φ(g) = p(go, o) = p(o, g−1o).

Note that φ satisfies φ(gk) = φ(kg) = φ(g) for all g ∈ G, k ∈ K . One checks that the
right convolution operator ρ(φ) realizes on G the operator Pf (x) = ∫

X
p(x, y)f (y) dy

defined on Cc(X). In particular, ‖P ‖2→2 = ‖ρ(φ)‖2→2, and∫
G

|φ(g)|2 dg =
∫

X

|p(x, o)|2 dx.

Given G, X, and p as above, if Q is another locally compact group that acts continu-
ously and transitively on X with compact stabilizers and such that p is Q-invariant as
well, we get right convolution operators ρG(φG) and ρQ(φQ) on G and Q, respectively,
with

‖P ‖2→2 = ‖ρG(φG)‖2→2 = ‖ρQ(φQ)‖2→2 and ‖φG‖2 = ‖φQ‖2. (3.4)

Proof of Lemma 3.4
First, assume that G has property RD. Let A be a compact symmetric neighborhood
of the identity generating Q. Let f ∈ L2(Q) be nonnegative, supported on B(R) with
R ≥ 1. Let π : G → Q be the projection with kernel K in the short exact sequence
of Lemma 3.4. Then f ◦ π has its support in B(R + 1) for the compact generating set
π−1(A). Applying equality (3.4) yields

‖ρ(f )‖2→2 = ‖ρ(f ◦ π )‖2→2 ≤ C(R + 1)D‖f ◦ π‖L2(G) = C(R + 1)D‖f ‖L2(Q).

Conversely, assume that Q has property RD, and fix a compact generating set as above.
Let f ∈ L2(G) be supported on B(R) ⊆ G with R ≥ 1. Define fK ∈ L2(Q) as in
Lemma 3.5, so that fK is supported on B(R) ⊆ Q. Then

‖ρ(f )‖2→2 ≤ ‖ρ(fK )‖2→2 ≤ CRD‖fK‖L2(Q) = CRD‖f ‖L2(G).

This shows that G has property RD. �
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Remark 3.6
According to Jolissaint [21, Proposition A.3], if a compactly generated group G has a
discrete cocompact subgroup with property RD, then G has property RD as well. For
instance, Jolissaint proved that discrete groups acting properly and cocompactly on
Riemannian manifolds with pinched negative sectional curvature have property RD.
He deduced (in [21, Corollary A.4]) that SL2(R), as well as any connected noncompact
Lie group of real rank one and finite center, has property RD.

Remark 3.7
It is not known whether property RD passes to cocompact lattices, and this appears
to be an interesting question. So far, only a few cocompact lattices in semisimple Lie
groups are known to have property RD (see [31], [24], and [5]), and the methods used
to establish property RD for those groups are quite different from what we do here
for connected groups. A. Valette [35] conjectures that cocompact lattices in real and
p-adic semisimple Lie groups have property RD.

4. Unimodular groups of type PK
In this section, we present a necessary and sufficient condition for property RD on
unimodular groups of the form G = PK, where K is a compact subgroup and P is a
closed and amenable subgroup. This condition involves the growth of the elementary
spherical function φ0 (see Theorem 4.4). If L is a locally bounded length function on
the group G, rad denotes the space of all radial functions in Cc(G), that is, functions
f such that L(x) = L(y) implies f (x) = f (y).

4.1. Amenability
Recall that a locally compact group G is amenable if and only if, for any nonnegative
f ∈ L1(G),

‖λ(f )‖2→2 = ‖f ‖1. (4.5)

In particular, if G is amenable and f ∈ L1(G) is nonnegative such that∫
G

m(y)−1/2f (y) dy < ∞, we have

‖ρ(f )‖2→2 =
∫

G

m(y)−1/2f (y) dy < ∞. (4.6)

In fact, G is amenable if and only if (4.5) holds for one nonnegative f ∈ L1(G) with
support S such that the closure of the subgroup generated by SS−1 is G (see, e.g., [26]
and [2, Theorem 4]).
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PROPOSITION 4.1 (Jolissaint [21, Corollary 3.1.8])
Let G be a locally compact, amenable group, and let L be a locally bounded length
function on G. The following are equivalent:
(1) there are constants c, d > 0 such that ν(BL(n)) ≤ cnd ;
(2) (G,L) has property RD;
(3) (G,L) has property RDrad.
In particular, the only amenable groups with property RD are those with polynomial
volume growth.

Proof
As G is amenable, by (4.5) we have

‖λ(f )‖2→2 =
∫

G

f (x) dx ≤
√

ν
(
supp(f )

)‖f ‖2. (4.7)

Thus (1) implies (2). Obviously, (2) implies (3). To see that (3) implies (1), apply
property RDrad to the radial function f = 1BL(R), and use the equality in (4.7). �

4.2. Nonamenability and nonunimodularity
Throughout Section 4.2, let G be a unimodular locally compact group having two
closed subgroups P and K such that G = PK. We assume that P is amenable and that
K is compact.

PROPOSITION 4.2
Let f be a nonnegative integrable function on G such that f (ks) = f (sk) = f (s) for
all k ∈ K and s ∈ G. Let f |P be the restriction of f to P . Then

‖λG(f )‖2→2 =
∫

P

m(y)−1/2f |P (y) dy, (4.8)

where m is the modular function of P . Moreover, G is nonamenable if and only if P

is nonunimodular.

Statements of this sort are folklore in the theory of semisimple Lie groups. The
following short and completely elementary proof of (4.8) is given for the convenience
of the reader.

Proof
We first prove (4.8). Let X = G/K be equipped with the G-invariant measure dx such
that ds = dx dk (where ds is a Haar measure on Gdk and is the normalized Haar
measure on K). Note that X can also be realized (as a measure space) as X = P/P ∩K .
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Because of the bi-invariance of f under K , we can set

p(xK, yK) = f (y−1x).

This kernel on X is invariant under the action of G (hence, also under the action of
P ). Thus, by (3.4), we have

‖ρG(f )‖2→2 = ‖ρP (f |P )‖2→2. (4.9)

Note that (4.9) only requires the compactness of K and the bi-invariance of f

but neither the unimodularity of G nor the amenability of P . As G is unimodu-
lar, we have ‖ρG(f )‖2→2 = ‖λG(f )‖2→2, and as P is amenable, ‖ρP (f |P )‖2→2 =∫
P

m(y)−1/2f |P (y) dy (see (4.6)). Equality (4.8) follows. By construction, we have∫
P

f |P (y) dy =
∫

G

f (s) ds = ‖f ‖1 (4.10)

and, by the unimodularity of G,

‖f ‖1 =
∫

G

f (s−1) ds =
∫

P

f |P (y−1) dy =
∫

P

m(y)−1f |P (y) dy. (4.11)

Now, if P is unimodular, we get ‖λG(f )‖2→2 = ∫
P

f |P (y) dy = ‖f ‖1, which shows
that G is amenable. If P is not unimodular and f is such that m is not constant on the
support of f |P , then we get

‖λ(f )‖2→2 =
∫

P

m(y)−1/2f |P (y) dy

<
( ∫

P

f

∣∣∣
P

(y) dy

∫
P

m(y)−1f

∣∣∣
P

(y) dy
)1/2

= ‖f ‖1,

where the last equality follows from (4.10) and (4.11). The characterization of
amenability given by (4.5) shows that G is nonamenable. �

Formula (4.8) appears difficult to use directly for our purpose, and we need the
following variation. The function φ(s) = m−1/2(x) is well defined because of two
independent facts. First, any s ∈ G can be written as s = xk, x ∈ P , k ∈ K . Second,
P ∩ K is compact. By definition, this function on G is right K-invariant. Set

φ0(s) =
∫

K

φ(ks) dk, s ∈ G. (4.12)
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PROPOSITION 4.3
For any nonnegative integrable function f on G such that f (ks) = f (sk) = f (s),
for all k ∈ K and s ∈ G, we have

‖λG(f )‖2→2 =
∫

G

φ0(s)f (s) ds. (4.13)

Proof
Using the K-bi-invariance of f , we have∫

P

m−1/2(x)f |P (x) dx =
∫

G

φ(s)f (s) ds =
∫

G

φ0(s)f (s) ds.

Thus the desired equality follows from Proposition 4.2. �

THEOREM 4.4
Let G be a unimodular locally compact group having two closed subgroups P,K

such that G = PK, P is amenable, and K is compact. Let L be a locally bounded
length function on G. Then (G,L) has property RD if and only if there are constants
c, d ∈ (0,∞) such that, for all r ≥ 1,∫

BL(r)
φ2

0(s) ds ≤ crd .

Proof
Assume that

∫
BL(r) φ

2
0(s) ds ≤ crd for all r ≥ 1. Let f ∈ L2(G) be nonnegative,

supported in BL(r), and K-bi-invariant. By Proposition 4.3, we have

‖λ(f )‖2→2 =
∫

G

φ0(s)f (s) ds ≤ ‖φ01BL(r)‖2‖f ‖2 ≤ c1/2rd/2‖f ‖2.

By Lemma 3.5, the same inequality holds without the hypothesis that f is K-
bi-invariant, which proves that G has property RD. In order to prove the converse,
let

L̃(x) =
∫

K

∫
K

L(kxk′) dk dk′,

and let M = supk∈K L(k). Notice that for all r > 2M ,

BL(r − 2M) ⊆ L̃−1([0, r]) ⊆ BL(r + 2M).

The function f = φ01L̃−1([0,r]) is K-bi-invariant. Hence,

‖λ(f )‖2→2 =
∫

G

φ0(s)f (s) ds.

We conclude by applying the RD inequality to f . �
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4.3. Semisimple groups with finite center
The first part of the following theorem is due to Herz [17, Théorème 1]. Herz’s proof
is different from ours in that it uses the dual viewpoint of matrix coefficients and a
reduction modulo a parabolic subgroup P .

THEOREM 4.5
Connected semisimple real Lie groups with finite center have property RD. If k is a
local field, the group of k-points of a connected linear algebraic semisimple group
defined over k has property RD.

Proof
We treat the real case and then give the necessary references for the algebraic case. Let
G be equipped with its canonical K-bi-invariant Riemannian metric, and let G = NAK

be an Iwasawa decomposition (see [16]). Theorem 4.4 applies with P = NA, which
is amenable and nonunimodular (if nontrivial). Moreover, the function φ0 defined at
(4.12) is the elementary spherical function or Harish-Chandra function that is almost
L2 in the sense that for all r ≥ 1, it satisfies∫

B(r)
|φ0(x)|2 dx ≤ Crγ , (4.14)

where γ = 2b + 	 = 2 × 
{indivisible positive roots} + dim(A) (see, e.g., [1], [9], or
[23]).

For an algebraic semisimple group over a local field, we also have a decomposition
G = PK with the desired property (see [34, Section 0.6] and [27, Theorem 2.2.1(2)]).
A version of (4.14) is given by [34, Lemma 4.2.5]. �

Remark. Let G be a noncompact semisimple Lie group, and let G = NAK be an
Iwasawa decomposition. The group P = NA is amenable and not unimodular and
thus can have neither property RD nor property RDrad with respect to any locally
bounded length function (see Proposition 4.1). However, if L is the length function
associated to the canonical Riemannian metric on G, the K-invariant functions on NA

are precisely the L-radial functions, and any L-radial function f ∈ L2(NA) supported
in BL(r) with r ≥ 1 satisfies ‖ρ(f )‖2→2 ≤ Crγ ‖f ‖2. Estimates derived in [29] show
that Damek-Ricci NA groups also have this property, although they are not associated
with a semisimple group.

5. Central extensions and property RD
The aim of this section is to establish the stability of property RD under central
extensions having polynomially distorted center. This is a generalization to locally
compact groups of [21, Proposition 2.1.9] for the case of central extensions. We start
with the following general result.
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PROPOSITION 5.1
Let p : E → G be a surjective homomorphism of compactly generated groups. There
exists a Borel section σ : G → E of p which is locally bounded (i.e., if K is compact,
then σ (K) is relatively compact) and which is Lipschitz with respect to word lengths
and such that σ (1) = 1.

For the proof, we need the following.

LEMMA 5.2
Let G be a compactly generated group, and let K be a compact symmetric neighbor-
hood of 1 generating G. Then there is a countable pointed partition (Gn, gn) that is a
partition

G =
∐
n∈N

Gn,

where the Gn’s are relatively compact Borel subsets of G and gn ∈ Gn such that
g−1

n Gn ⊆ K .

Proof
Let {gn} ⊆ G be a maximal subset of elements with the property that d(gn, gm) =
LK (g−1

n gm) > 1. Notice that since the ball of radius 1 is a neighborhood of 1, the set
of gn’s is discrete in G. Since a ball of finite radius is compact, there are only finitely
many gn’s in each ball of finite radius, so there are countably many altogether. Since
{gn} is maximal, the union of balls of radius 1 centered at the gn’s cover G. (If not,
then there would be g ∈ G not in {gn} and at distance greater than 1 to any gn, which
contradicts maximality.) We write B(gn, r) = gnB(r) for the ball of radius r centered
at gn. We define the Gn’s as

G0 = K = B(1), G1 = B(g1, 1) \ G0, . . . , Gn = B(gn, 1) \
( ⋃

k<n

Gk

)
, . . . .

It is a partition of G by construction, and gn ∈ Gn because for any n �= m, we have that
d(gn, gm) > 1, so that gn �∈ B(gm, 1). Finally, g−1

n Gn ⊆ g−1
n B(gn, 1) = g−1

n gnK = K ,
and the proof is complete. �

Proof of Proposition 5.1
Let K be a symmetric compact generating neighborhood of the identity in G, and let
(Gn, gn) be a pointed partition of G as in Lemma 5.2. Let S be a symmetric compact
generating set for E. For each n ∈ N, let en ∈ E be a preimage of gn of minimal length
in the alphabet S. Let σK be a Borel section of p on K whose image is relatively
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compact (see [22, Lemma 2]). We may assume that σK (1) = 1. Define

σn : Gn → E, x �→ enσK (g−1
n x)

and σ : E → E by σ = ∐
n∈N

σn, so that σ is a Borel map. We check that it is a
section for p. For g ∈ Gn, we have

pσ (g) = pσn(g) = p
(
enσK (g−1

n g)
) = p(en)pσK (g−1

n g) = gng
−1
n g = g.

Now, let us prove that the section σ that we just obtained is Lipschitz. Let C =
sup{LS(g)|g ∈ σK (K)}. Since σK (K) is relatively compact in E, we have that C <

∞. For gn of length m, if we write gn = k1 · · · km with all ki ∈ K , we have that
LE(σK (k1) · · · σK (km)) ≤ Cm and p(σK (k1) · · · σK (km)) = gn. Since en is a shortest
preimage of gn, we deduce

LS(en) ≤ LS

(
σK (k1) · · · σK (km)

) ≤ Cm = CLK (gn).

Finally, take g ∈ G and n ∈ N such that g ∈ Gn. We have

LS

(
σ (g)

) = LS

(
enσK (g−1

n g)
) ≤ LS(en) + C

≤ CLK (gn) + C ≤ C
(
LK (g) + 2

)
since LK (g−1

n g) = LK (g−1gn) ≤ 1 because g−1
n g ∈ K if g ∈ Gn. �

Definition 5.3
Let D : N → N be a nondecreasing function. Let A and E be two compactly generated
groups. Assume that A < E (i.e., A is a subgroup of E). We say that A has distortion
at most D if there are two compact symmetric generating sets U and S for A and E,
respectively, such that for all a ∈ A,

LU (a) ≤ D
(
LS(a)

)
LS(a).

We say that the subgroup A has polynomial distortion in E if D can be chosen to be a
polynomial and undistorted if D can be chosen constant.

Notice that our definition of distortion is equivalent to the one given by Gromov in
[13, Chapter 3], as he defines (under the hypothesis of Definition 5.3) the distortion
function as

DISTO(r) := diamA(A ∩ BE(r))

r
,

and one easily checks that A has distortion at most DISTO because 2D(n) ≥ DISTO(n/2).
We need the following simple lemma.
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LEMMA 5.4
Let p : G → Q be a surjective homomorphism of compactly generated groups. Let
H be a subgroup of G which contains ker(p). Then the distortion of p(H ) in Q is
bounded by the distortion of H in G.

Proof
Let S and T be compact symmetric generating sets for G and H , respectively. Then
p(S) and p(T ) are compact symmetric generating sets for Q and p(H ), respectively.
Let D be the distortion of H in G relative to the word lengths LS and LT . Take
q ∈ p(H ); we want to estimate Lp(T )(q) in terms of Lp(S)(q). Since ker(p) < H ,
we can choose h ∈ H of minimal S-length, so that p(h) = q and LS(h) = Lp(S)(q).
Hence, we obtain

Lp(T )(q) ≤ LT (h) ≤ D
(
LS(h)

)
LS(h) = D

(
Lp(S)(q)

)
Lp(S)(q). �

PROPOSITION 5.5
Let 1 → A → E → G → 1 be an exact sequence of compactly generated groups
with A closed and central. If G has property RD, and if A has polynomial distortion
in E, then E has property RD as well.

Proof
As G has property RD, it is unimodular, and it follows from [3, Chapitre VII,
Paragraphe 2, Numéro 7, Corollaire] that E is also unimodular. First, notice that
a compactly generated abelian group is of polynomial growth for any word length and
thus has property RD. Let T , S, and U be respective compact symmetric generating
neighborhoods of the identity in E, A, and G. Let CG,DG and CA,DA be the constants
needed for the RD inequality (as in Definition 2.1) for G and A, respectively. Let σ

be a section of the canonical projection p : E → G with the same properties as in
Proposition 5.1. Each element in E can be written in a unique way as aσ (x) with
a ∈ A and x ∈ G. Recall that the formula

c(x, y) = σ (x)σ (y)σ (xy)−1, ∀x, y ∈ G,

defines an inhomogeneous 2-cocycle on G with values in A. For f, g ∈ Cc(E), we
define fy(a) = f (aσ (y)) and

g′
(y,x)(a) = gy−1x

(
a − c(y, y−1x)

)
.

For all x, y, the elements fy and g′
(y,x) belong to L2(A), and since c is measurable, we

have

f ∗ g
(
aσ (x)

) =
∫

G

( ∫
A

fy(b)g′
(y,x)(a − b) db

)
dy =

∫
G

fy ∗ g′
(y,x)(a) dy.
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If we square and integrate over E, we obtain

‖f ∗ g‖2
L2(E) =

∫
G

( ∫
A

∣∣∣ ∫
G

fy ∗ g′
(y,x)(a) dy

∣∣∣2
da

)(1/2)2
dx

≤
∫

G

( ∫
G

‖fy ∗ g′
(y,x)‖L2(A) dy

)2
dx.

Now assume that the support of f is contained in the ball of radius r , and for y ∈ G,
let us look at the support of fy . Take a in the support of fy . Then LT (aσ (y)) ≤ r , so
that LT (a) ≤ LT (aσ (y)) + LT (σ (y)) ≤ C ′′r , where C ′′ > 1 is a constant that depends
only on the Lipschitz constants of σ and p. Hence, the hypothesis on the distortion
of A implies the existence of constants k > 1, C > 1, depending only on the word
lengths, such that LS(a) ≤ C(1+ r)k . Applying property RD for A to ‖fy ∗g′

(y,x)‖L2(A),
we obtain

‖f ∗ g‖2
L2(E) ≤

∫
G

( ∫
G

CA

(
C(1 + r)k

)DA‖fy‖L2(A)‖g′
(y,x)‖L2(A) dy

)2
dx.

Finally, define f̃ , g̃ ∈ L2(G) by f̃ (y) = ‖fy‖L2(A) and g̃(y) = ‖gy‖L2(A), so that,
clearly, ‖f̃ ‖L2(G) = ‖f ‖L2(E) and ‖g̃‖L2(G) = ‖g‖L2(E). Notice that f̃ is supported on
the ball of radius C ′r , where C ′ is the Lipschitz constant of p. Concerning g, we have

‖g′
(y,x)‖L2(A) = ‖gy−1x‖L2(A) = g̃(y−1x).

Going back to the computation of ‖f ∗ g‖2
L2(E), we now get

‖f ∗ g‖2
L2(E) ≤ C2

A

(
C(1 + r)k

)2DA‖f̃ ∗ g̃‖2
L2(G)

≤ C2
A

(
C(1 + r)k

)2DA
C2

GC ′r2DG‖f ‖2
L2(E)‖g‖2

L2(E).

We conclude that E has property RD by Lemma 2.4(2). �

6. Lie groups with property RD
In this section we prove that (c) implies (a) in our main theorem, Theorem 0.1.

THEOREM 6.1
Let G be a connected Lie group whose universal cover G̃ decomposes as S̃ ×Q̃, where
S̃ is semisimple and Q̃ has polynomial growth. Then G has property RD.

COROLLARY 6.2
Semisimple Lie groups have property RD.

We start with the following lemma.
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LEMMA 6.3
Let Z be the center of a simply connected semisimple Lie group G̃. Then Z is undis-
torted in G̃.

Proof
Let G = G̃/Z, and let p : G̃ → G be the canonical projection. As G̃ is semisimple,
Z is discrete, and this implies that G has trivial center. Let G = NAK be an Iwasawa
decomposition. Since G has trivial center, K is compact. Let S be the simply connected
group S = NA by K̃ = p−1(K) and by S̃, the connected component of 1 in p−1(S).
Consider the map

ϕ : G → S × K,

g �→ (s, k).

On G, we fix a left-invariant Riemannian metric. We consider S × K as the direct
product of the Lie groups S and K and choose a left-invariant Riemannian metric
on this product. According to [30, Lemma 3.1], and since K is compact, the map
ϕ is bi-Lipschitz. Notice, for further reference, that G̃ = S̃K̃ and Z ⊆ K̃ (see [16,
Theorem 5.1 and its proof]). The map

ϕ̃ : G̃ → S̃ × K̃,

s̃k̃ �→ (s̃, k̃)

is well defined since G̃ = S̃K̃ . Consider the commutative diagram

G̃

ϕ̃
��

p

��

S̃ × K̃

p1

��

G
ϕ

�� S × K

where p1 is the product of the Z-regular cover K̃ → K with the trivial cover S̃ → S.
On G̃, we choose the left-invariant Riemannian metric that turns p into a local isometry.
On S̃ × K̃ , we choose the left-invariant metric (for the product structure) which turns
p1 into a local isometry. As ϕ̃ covers ϕ, it is also bi-Lipschitz. Since Z ⊆ K̃ is
cocompact, it is undistorted, and since the inclusion K̃ ⊆ S̃ × K̃ is totally geodesic, it
is undistorted as well, and we conclude because ϕ̃ is bi-Lipschitz. �
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Proof of Theorem 6.1
We show that G is an extension of a group with property RD by a central subgroup
with polynomial distortion. A group G as in Theorem 6.1 is of the form G = G̃/
,
where 
 is a discrete subgroup of Z(G̃), the center of G̃. Now, Z(̃S), the center of S̃,
is discrete in S̃ (see [12]), and hence the semisimple group S̃/Z(̃S) has trivial center.
The following diagram is commutative:

G̃

pZ

�������������

p


��

G = G̃/

p

�� G̃/Z(G̃)

where the bottom arrow p : G → G̃/Z(G̃) is the quotient of G by Z(G̃)/
. Since
Z(G̃)/
 is central in G, we have a central extension to which we want to apply
Proposition 5.5. To start with,

G̃/Z(G̃) = S̃/Z(̃S) × Q̃/Z(Q̃)

has property RD because it is a product of two groups with property RD (see
Lemma 3.1 combined with Theorem 4.5 and Proposition 4.1). In [38], Varopoulos
proved that any closed subgroup of a connected Lie group with polynomial volume
growth is at most polynomially distorted. Combined with Lemma 6.3 and the fact that
if A is a subgroup of X and B is a subgroup of Y , then

DISTO(A × B,X × Y ) = max
(
DISTO(A,X), DISTO(B, Y )

)
,

it implies that the center Z(G̃) is at most polynomially distorted in G̃. Hence, according
to Lemma 5.4, the subgroup A = Z(G̃)/
 is at most polynomially distorted in G. We
conclude using Proposition 5.5. �

7. The structure of connected Lie groups with property RD
In this section we finish the proof of our main theorem, Theorem 0.1. To do so, we start
by explaining the terms used in Theorem 0.1(b). Recall that a Lie algebra is of type R
if all the weights of the adjoint representation are purely imaginary. A Lie group is of
type R if its associated Lie algebra is of type R. According to Guivarc’h and Jenkins,
a Lie algebra is of type R if and only if the associated Lie group has polynomial
volume growth (see [14] and also [19]). Thus by the fundamental theorem of Lie (see
[36, Theorem 2.8.2]), the statements (b) and (c) in Theorem 0.1 are equivalent. We
now turn to the problem of whether (a) implies (b) in the proof of Theorem 0.1. This
part relies on Varopoulos’s work in [37]. Varopoulos introduces a dichotomy among
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finite-dimensional real Lie algebras. Namely, he divides them into B-algebras and
NB-algebras. We now quote the two results of [37] which are crucial for our purpose.

THEOREM 7.1 (Varopoulos [37, Proposition, page 824])
Let g be a unimodular algebra. Then either g is a B-algebra, or g is the direct product
s × q, where q is an algebra of type R and s is semisimple.

A connected Lie group is called a B-group if its Lie algebra is a B-algebra. Those
groups have the following property.

THEOREM 7.2 (Varopoulos [37, Theorem B])
Let G be a B-group, and let φ be a continuous compactly supported probability density
on G. Assume that φ∗ = φ. Then there exists c > 0 such that the convolution powers
φ(n), where n ∈ N, satisfy

φ(n)(1) = O
(‖λ(φ(n))‖2→2 exp(−cn1/3)

)
. (7.15)

This theorem has an easy corollary.

COROLLARY 7.3
B-groups cannot have property RD.

Proof
Let G be a B-group. We choose φ as in Theorem 7.2. We have λ(φ)∗ = λ(φ∗) = λ(φ)
and ‖λ(φ(2n))‖2→2 = ‖λ(φ(n))‖2

2→2. By (7.15), it follows that

φ(2n)(1) ≤ A‖λ(φ(2n))‖2→2 exp(−cn1/3) = A‖λ(φ(n))‖2
2→2 exp(−cn1/3)

for some constant A ≥ 1. Set f = φ(n), so that φ(2n)(1) = ‖f ‖2
2. Now assume that G

has property RD; then

‖λ(f )‖2
2→2 ≤ C2n2D‖f ‖2

2 = C2n2Dφ(2n)(1)

≤ AC2n2D‖λ(φ(n))‖2
2→2 exp(−cn1/3)

= AC2n2D‖λ(f )‖2
2→2 exp(−cn1/3),

where C and D are the constants coming from the definition of property RD and theIn the
paragraph
following the
proof of Cor.
7.3, please let us
know if the C
heading is OK.

second inequality follows from the assumption that G is a B-group. We conclude that
1 ≤ AC2n2D exp(−cn1/3), which is a contradiction for n big enough. It follows that G

does not have property RD. �
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End of the proof of Theorem 0.1 (Main theorem)
We can now finish the proof of our main result. It remains to show that Theorem 0.1(a)
implies (b). Let G be a connected Lie group. If G has property RD, then according
to [20], it must be unimodular. By Corollary 7.3, a unimodular group having property
RD cannot be a B-group. By Theorem 7.1, it follows that G must have the structure
described in (b). The proof of Theorem 0.1 is now complete. �

Recall that a group G is almost connected if the connected component of the identity
in G is cocompact. Recall also that any almost connected group G admits a compact
normal subgroup K such that G/K is a Lie group (see [28, Chapter IV, Paragraph
4.6]). Notice that G/K has finitely many connected components. We can now give a
complete classification for almost connected compactly generated groups (given by
Theorem 0.1 combined with Lemmas 3.3 and 3.4).

THEOREM 7.4
Let G be an almost connected compactly generated group. Let K be a normal compact
subgroup such that L = G/K is a Lie group. Let L0 be the connected component of
the identity in L. The following are equivalent:
(a) G has property RD;
(b) the Lie algebra l of L decomposes as a direct product l = s × q, where s is

semisimple and q is an algebra of type R;
(c) the universal cover L̃0 of L0 decomposes as a direct product S̃ × Q̃, where S̃

is semisimple and Q̃ has polynomial volume growth.

Acknowledgments. We thank Jean-Philippe Anker for pointing out to us that [17,
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Invent. Math. 23 (1974), 173 – 178. MR 0338685



xxx dmj4289 January 30, 2007 13:10

24 CHATTERJI, PITTET, and SALOFF-COSTE
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[40] A. WEIL, L’intègration dans les groupes topologiques et ses applications, Actual. Sci.
Ind. 869, Hermann et Cie., Paris, 1940. MR 0005741



xxx dmj4289 January 30, 2007 13:10

26 CHATTERJI, PITTET, and SALOFF-COSTE

Chatterji
Department of Mathematics, Ohio State University, Columbus, Ohio 43210-1174, USA;
indira@math.ohio-state.edu

Pittet
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