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Abstract

Let G be a connected complex Lie group or a connected amenable Lie group. We show that any
flat principal G-bundle over any finite CW-complex pulls back to a trivial G-bundle over some
finite covering space of the base space if and only if the derived group of the radical of G is
simply connected. In particular, if G is a connected compact Lie group or a connected complex
reductive Lie group, then any flat principal G-bundle over any finite CW-complex pulls back to
a trivial G-bundle over some finite covering space of the base space.

1. Introduction

Let G be a Lie group. A principal G-bundle P E X: over a connected CW-complex X admits a
flat structure, if there is a homomorphism

X G: ,1r p ( )

the holonomy of the flat bundle, such that the bundle P is equivalent to the G-bundle
X G Xŕ˜ canonically associated with the universal cover X̃ of X; the notation X Gŕ˜ refers
to the orbit space of X G´˜ under the X1p ( )-action given by

x g x g, , .g g r g( ) = ( ( ) )
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A flat G-bundle is a principal G-bundle, equipped with a flat structure ρ as above. According
to [17], a principal G-bundle admits a flat structure if and only if the classifying map X BG:q
factors as

X B X BG,1p ( )

where the first arrow classifies the universal cover of X and the second one is Br for some homo-
morphism X G: 1r p ( ) . Equivalently, if Gd denotes the group G with the discrete topology and

G G:i d denotes the identity map, a principal G-bundle over X admits a flat structure, if and
only if it is classified by a map X BG:q which factors through

B BG BG: .i d

A principal G-bundle over X is called virtually trivial if its pullback to some finite covering
space of X is trivial. One can in general not expect a principal G-bundle to be virtually trivial, even
if the given bundle admits a flat structure. Examples of flat real vector-bundles over surfaces, which
are not virtually trivial as vector-bundles, were given by Milnor [19]. His examples have a non-zero
Euler class. Examples of flat real vector-bundles with vanishing Euler class, which are not virtually
trivial vector-bundles, were given by Millson [18] and Deligne [4]. On the other hand, a result of
Deligne and Sullivan states that any flat complex vector-bundle over any finite CW-complex is vir-
tually trivial as a complex vector-bundle [5]. The following question is thus natural to ask:

QUESTION. Under which conditions on a connected Lie group G is any flat principal G-bundle,
over any finite CW-complex, virtually trivial as a principal G-bundle?

Generalizing the proof of the Deligne–Sullivan theorem, we first obtain the following result.

THEOREM 1.1 Let G be a connected complex reductive or a compact Lie group and X a connected
finite CW-complex. Let P E X: be a flat principal G-bundle. Then, P is virtually trivial as a
principal G-bundle.

Our main result is more general and gives a necessary and sufficient condition on a large class
of Lie groups G, for a flat principal G-bundle over a finite complex to be virtually trivial as a
G-bundle. Recall that the radical R of a connected Lie group G is its maximal connected normal
solvable subgroup. It is always a closed subgroup of G, but its commutator subgroup R R,[ ] is in
general not closed in G.

THEOREM 1.2 Let G be a connected complex Lie group or a connected amenable Lie group. The
following conditions are equivalent:

(1) Any flat principal G-bundle over any finite CW-complex is virtually trivial as a G-bundle.
(2) The derived subgroup R R,[ ] of the radical R of G is simply connected.

The equivalent conditions are satisfied if, moreover, G is linear.

In the solvable case, Theorem 1.2 is due to Goldman in [11]. The finiteness assumption on the
CW-complex which is the base of the bundle is not stated explicitly in [11], but is necessary, as
the following example shows: the flat principal S1-bundle over K , 1� '( ) with classifying map
induced by the inclusion S1� ' Ì is not a virtually trivial S1-bundle, because its classifying map
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K BS K, 1 , 21� ' '( ) = ( )

corresponds to an element of infinite order in

H K n, 1 , lim .2 � ' ' ' '( ( / ) ) @ /
¬¾¾

Note that for GL n, �( ) the condition (2) of Theorem 1.2 is true: the radical R of GL n, �( ) is a
complex torus � ,́ thus R R,[ ] is trivial. More generally, if G is complex reductive, its radical is a
central complex torus, R � �= ´ ´´ ´" , thus R R e,[ ] = { }. An example of a complex analytic
amenable group G for which the conditions (1) and (2) fail is G H Z= , where H is the complex
Heisenberg group of upper triangular complex 3× 3-matrices with 1ʼs on the diagonal, and
Z H< an infinite cyclic central subgroup; the radical R of G equals G, and R R,1 'p ([ ]) = , as
one easily checks.

The implication 1 2( ) ( ) holds for any connected Lie group. Indeed, 1( ) implies that the
natural map H BG H BG, ,2 2� �( ) ( )d is zero and, according to [3, Proof of Theorem 2.2], this
implies 2 ;( ) the argument is based on a construction of Goldman [11]. Hence, in order to prove
Theorem 1.2, it is enough to show that if G is a connected complex Lie group or a connected
amenable Lie group and, if the derived subgroup of the radical of G is simply connected, then any
flat principal G-bundle over any finite CW-complex is virtually trivial as a G-bundle.

The main steps in the proof of Theorem 1.2 are the following. According to [3], all real charac-
teristic classes of a connected Lie group G are bounded, when viewed as classes in H BG ,* �( )d ,
if and only if the derived subgroup of the radical of G is simply connected. Combining this fact
with Gromov’s Mapping Theorem [13, Section 3.1], we reduce the problem in the complex Lie
group case to the case of semisimple groups. A connected complex semisimple or, more generally,
reductive Lie group G has a unique complex algebraic structure, and there exists a Chevalley
integral group scheme G', whose set of �-points G �' ( ) in its Lie group topology, G Lie�' ( ) , is
isomorphic to G as a complex Lie group (for the existence of G' see [6]; see also [9]). As
explained in [8], this opens the way to the application of Sullivan’s completion techniques, in a
similar way as in [5]: the Hasse Principle (Lemma 3.1) allows us to conclude. For the case of an
amenable Lie group G, we proceed by mapping G to its complexification G+, which we show to
be a homotopy equivalence (Lemma 2.1). This allows us to reduce the amenable case to the com-
plex Lie group case.

According to Gotô [12, Theorem 25], a connected solvable Lie group R is linear if and only if
the closure of its derived subgroup is simply connected. As the map between fundamental groups

R R R R, , ,1 1( )p p([ ]) [ ]

induced by the inclusion, is one-to-one, it follows that a linear connected complex or amenable
Lie group G satisfies the equivalent conditions of the theorem.

We note that there exist nonlinear connected amenable Lie groups, which satisfy the equivalent
conditions of Theorem 1.2 (the radical R of such a group then satisfies R R, 01p ([ ]) = , but

R R, 01p ([ ]) ¹ ). The following is an example. Take for H the Heisenberg group of upper triangu-
lar real 3× 3-matrices with 1ʼs on the diagonal and Z H< an infinite cyclic central subgroup.
Embed Z in S1 and note that the diagonal embedding Z S H1< ´ identifies Z with a discrete cen-
tral subgroup, with quotient group R S HZ

1 ´≔ a nilpotent Lie group, equal to its radical. One
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checks that R R, �[ ] @ with closure R R,[ ] in R is isomorphic as a Lie group to S S1 1´ . By Gotô’s
theorem cited above, we infer that R is not a linear Lie group. It follows that R is a nonlinear con-
nected nilpotent Lie group with derived group R R,[ ] simply connected.

The paper is organized as follows. In Section 2 we prove the results on the complexification
of amenable Lie groups, which we need later on (Lemma 2.1). In Section 3 we prove
Theorem 1.1, and in Section 4 we prove a lemma closely related to Goldman’s result [11], the
main difference being that it also applies to bundles which are not necessarily flat. In Section 5
we prove Theorem 1.2.

2. Complexification of amenable Lie groups

We first recall some general facts on the complexification of a connected Lie group G. We follow
the notation used in Hochschild [15] (see also Bourbaki [1 Chapter III, §6, Prop. 20]). To any Lie
group corresponds a complex Lie group G+ and a homomorphism of Lie groups

G G: ,Gg +

called the universal complexification of G, with the property that, for every continuous homo-
morphism η of G into a complex Lie group H, there is one and only one complex analytic homo-
morphism G H:h+ + such that Gh h g= + ◦ . In general Gg is not injective. Its kernel is a
central (not necessarily discrete) subgroup of G. Let R G< denote the radical of the connected
Lie group G and L G< a Levi subgroup (a maximal connected semisimple subgroup). Then
G RL= and, in case L G< is closed, the kernel of Gg coincides with the kernel of Lg and is dis-
crete in G (see [15, Theorem 4]). Also, if G is linear, Gg is injective and for G compact, Gg maps
G isomorphically onto a maximal compact subgroup of G+. Therefore, for G compact, the map Gg
is a homotopy equivalence.

As explained in [15], in the case R is a connected solvable Lie group (not necessarily linear),
the complexification map Rg is injective and induces an isomorphism between fundamental groups

R R1 1p p( ) ( )+ . The universal covers of the solvable Lie groups R and R+ being contractible, it
follows that R R:Rg

+ is a homotopy equivalence.

LEMMA 2.1 Let G be a connected amenable Lie group and G G:Gg
+ the universal complexifi-

cation map:

(1) The radical of G+ is naturally isomorphic to the complexification R+ of the radical R of G.
(2) G G:Gg

+ is one-to-one and a homotopy equivalence.
(3) R R R R, ,1 1p p([ ]) @ ([ ])+ + .

Proof. (1) A connected Lie group G is amenable if and only if it fits in a short exact sequence

R G Q1 1 ,{ } { }

where R denotes the radical of G and the quotient Q is compact semisimple [21, Corollary 4.1.9].
Let L G< be a Levi subgroup. Since G R Q= is compact and semisimple, its fundamental group
is finite. Thus L Q, induced by the projection G Q, is a finite covering space and it follows
that L is compact, thus closed in G. Moreover, L is linear and we conclude that L L:Lg

+ is
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one-to-one. According to [15, Theorem 4, 2 5( ) ( )], we conclude that Gg is injective. Consider
the commutative diagram

As remarked above, Rg and Qg are injective maps and homotopy equivalences. By [15, Theorem 4],
the map i+ maps R+ isomorphically onto the radical of G+, proving (1).

(2) We first claim that G R+ + is isomorphic to Q+. To see this, we need to verify that this quo-
tient has the universal property of Q+. Let G G G R:n + + + be the natural map. Since
R ker nÌ , we obtain a natural map Q G R:n + +. Let f Q C: be an analytic homomorph-
ism into a complex Lie group C. Then f G Q C:p◦ is trivial on R and extends therefore
uniquely to a complex analytic homomorphism G C+ , which vanishes on R+. It follows that
the original map f factors uniquely through Q G R:n + +, showing that G R Q@+ + +. Note
that both horizontal lines in the diagram above are fibration sequences. We conclude that Gg must
be a homotopy equivalence too, proving (2).

(3) As R is solvable, Rg is one-to-one, hence so is its restriction R R R R: , ,h [ ] [ ]+ + to R R,[ ].
The universal property of

R R R R: , ,R R,g [ ] [ ][ ]
+

implies the existence of a complex analytic homomorphism

R R R R: , , ,h [ ] [ ]+ + + +

such that R R,h g h=+
[ ]◦ . Taking derivatives at the identities and using the fact that for any real

Lie algebra r, we have

, , ,� � �[ Ä Ä ] = [ ] Är r r r

we deduce that h+ is a local isomorphism, hence a covering homomorphism. This proves (3) in
the case R is simply connected. Indeed, the inclusion R R:Rg

+ is a homotopy equivalence,
hence R+ is also simply connected, and according to [2, Lemma 6] we have

R R R R R, , .1 1 Çp p( [ ]) = ( ) [ ]+ + + + +

This shows that R R,[ ]+ + is also simply connected, hence h+ is a global isomorphism. To handle
the general case, let us show that the discrete kernel of h+ is trivial. To that end, we show that the
natural embeddings of fundamental groups in the centers of universal covers coincide. Let R̃ be
the universal cover of R. It is obvious from the construction of the universal complexification that
the universal cover R+˜ of R+ coincides with R( )+˜ . We have
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The first equality (as well as the fourth one) is true because the embedding of a connected solvable
Lie group in its universal complexification is a homotopy equivalence, the second equality (as well
as the last one) is a general fact (see [2, Lemma 6]) about closed normal subgroups in Lie groups,
the third equality follows from the fact that R R R R R, ,Ç[ ] Ì [ ]+˜ ˜ ˜ ˜ ˜ , which is deduced from the
corresponding inclusion between Lie algebras. The fifth equality is the simply connected solvable
case, hence R R R R, ,[ ] = [( ) ( ) ]+ + +˜ ˜ ˜ ˜ . Thus R R R R, ,1 1p p([ ]) @ ([ ])+ + , proving (3). □

3. Proof of Theorem 1.1

The proof of Theorem 1.1 will be presented in the form of two lemmas (Lemmas 3.2 and 3.3), one
dealing with the reductive case and the other one dealing with compact Lie groups.

First, we fix some notation and recall some facts concerning Sullivanʼs completion functor [20].
Let p be a prime. We will think of Sullivanʼs p-adic completion as a functor X Xp6 ˆ on the homo-
topy category of connected CW-complexes, together with a natural transformation X Xpˆ , which
for X a simply connected CW-complex of finite type induces isomorphisms

X X i, 2,i p i p'( ) ( )p pÄ ³ˆ ˆ

with p'̂ denoting the ring of p-adic integers. We will need the following basic fact from [20,
Theorem 3.2].

LEMMA 3.1 (SULLIVAN, HASSE PRINCIPLE) Let X be a finite CW-complex and Y a simply connected
CW-complex of finite type. A map

f X Y:

is homotopic to a constant map if and only if for every prime p the map

f X Y Y:p pˆ ˆ

is homotopic to a constant map.

The point here is that the space X in the lemma does not need to be simply connected (or
nilpotent).

LEMMA 3.2 Let G be a connected complex reductive Lie group and X a connected finite CW-
complex. Let P E X: be a flat principal G-bundle. Then P is a virtually trivial G-bundle.

Proof. We can assume that G is isomorphic to G Lie�' ( ) for some Chevalley group scheme G',
where G Lie�' ( ) stands for the group of �-points of G' in its Lie group topology. Let π be the
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fundamental group of X and G G: Lie�'r p = ( ) the holonomy of the bundle P. Since π is
finitely generated, there exists a subring �L Ì of finite type over ' such that the image of ρ is
contained in G' (L). We note that such a Λ is a Jacobson ring, meaning that every prime ideal of
Λ is the intersection of maximal ideals. Indeed, ' is a Jacobson ring and therefore Λ is too, being
a finitely generated '-algebra (see Eisenbud [7 Chapter I, Thm. 4.19]). It follows that if ' Ì L is
the natural inclusion and Ì Lm a maximal ideal, then ' Ç m = s( ) is a maximal ideal in ' and
� = L m is a finite extension field of s' ( ) (cf. [7 Thm. 4.19]). Let � be an algebraic closure of
� and H �Ì a strict Henselization of Λ in �, with residue field �. We then obtain a diagram of
group homomorphisms

such that the image of the composite map s G: �'f p( ) ( ) is finite, because π is finitely gener-
ated and G �' ( ) is a locally finite group. Let X s( ) be the finite covering space of X corresponding
to the kernel of sf ( ). We will show that the bundle P pulled back to X s( ) is classified by a map

s X s BG:y ( ) ( ) such that

s X s BG BG:p py ( ) ( ) nn

is homotopically trivial for all primes p different from s.
For every prime p different from the characteristic s of � the map s X s BG:p py ( ) ( ) nn is homo-

topically trivial, because up to homotopy it can be factored through the homotopically trivial map
X s BG H BG �' '( ) ( ) ( ), using natural maps

Here BG et�( ) stands for the etale homotopy type of the simplicial scheme BG� and BG pet�(( ) )ˆ
denotes its Sullivan p-completion. The homotopy equivalence on the right corresponds to the
bottom row of the commutative diagram of Remark (2.5) in [8]. The bottom map is the map
described by (2.2) in [8], followed by p-completion.

It remains to deal with the prime p = s. By Corollary 14.5 of Eisenbud [7], there is an element
a0 '¹ Î such that, for every prime t not dividing a, there is a prime ideal P t( ) < L with

P t t'Ç( ) = ( ). We choose such a prime t different from s and a maximal ideal n of Λ containing
P t( ). Then the finite field L n has characteristic t different from s. We then obtain as before a
finite covering space X t X( ) such that the bundle P pulled back to X t( ) is classified by a map

t X t BG:y ( ) ( ) satisfying

t X t BG BG:p py ( ) * ( )� nn
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for all primes p different from t. Now choose a common finite covering space X s t,( ) of X s( ) and
X t( ). The bundle P pulled back to X s t,( ) is classified by a map s t X s t BG, : ,y ( ) ( ) such
that

s t X s t BG, : ,p py ( ) * ( )� nn

for all primes p. Because G is connected, BG is simply connected and using that G is homotopy
equivalent to a maximal compact subgroup K G< , we see that BG BK� is a simply connected
space of finite type. We conclude by Lemma 3.1 that the map

s t X s t X BG, : ,y ( ) ( )

is homotopically trivial, and it follows that the bundle P E X: is a virtually trivial G-bundle. □

LEMMA 3.3 Let G be a connected compact Lie group and X a connected finite CW-complex. Let
P E X: be a flat principal G-bundle. Then P is a virtually trivial G-bundle.

Proof. For G a connected compact Lie group, the natural map G G:Gg
+ from G to its com-

plexification G+ maps G isomorphically onto a maximal compact subgroup of G+ (cf.
Chapter XVII, Theorem 5.1 of [14]). Thus G GGg ( )+ is a contractible space and, therefore, Gg
and B Gg are homotopy equivalences. Let X BG:Gf be the classifying map for the bundle P.
Since G+ is a connected complex reductive Lie group, we conclude by the previous lemma that
there exists a finite covering space X X such that

X X BG BG
B Gg +⟶

is homotopic to a constant map. Because B BG BG:Gg
+ is a homotopy equivalence, we con-

clude that X X BG is homotopically trivial too, proving the assertion of the lemma. □

4. Bundles with solvable holonomy

The following is a characterization of virtually trivial principal bundles over finite connected CW-
complexes, in case the structural group is a connected solvable Lie group. It can be viewed as a
variation of the theorems due to Goldman and Hirsch [10, 11], but without assuming that the
bundle in question is flat.

LEMMA 4.1 Let R be a solvable connected Lie group and P E X: a principal R-bundle over a
connected finite CW-complex X, with X BR:y the classifying map. The bundle P is virtually
trivial as an R-bundle if and only if H BR H X: , ,2 2* � �y ( ) ( ) is the 0-map.

Proof. If 0*y ¹ then for any finite covering space X X:p the composition

H BR H X H X, , ,2 2 2
* *� � �( ) ( ) ( )

y p

is non-zero too, because H X H X: , ,* * *� �p ( ) ( ) is injective. It follows that the classifying
map X BR cannot be homotopically trivial, and hence P cannot pull back to a trivial bundle on
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some finite covering space of X. Conversely, assume that 0*y = . Because R is homotopy equiva-
lent to a maximal compact subgroup T RÌ , where T is a torus, BR is homotopy equivalent to
K , 2n'( ) because T n

1 'p ( ) @ . It follows that there is a single obstruction H X R,2
1w pÎ ( ( )) to

the existence of a section for P. The kernel of the natural map H X H X, ,2 2' �( ) ( ) is finite
(isomorphic to the torsion subgroup of H X,1 '( )), and thus the hypothesis that 0*y = implies
that ω must be a torsion class. From the universal coefficient theorem we see that therefore

H X R H X R H X RExt , , , Hom , , .1 1
2

1 2 1Z \' '(w p p pÎ ( ) ( )) ( ( )) ( ( ) ( ))

Let H XTor ,1 'Ì ( ) be the finite torsion subgroup and choose a surjection X: Tor1q p ( ) . Let
f X X: denote the covering space corresponding to the kernel of θ. It follows that

f H X R0 Ext , , .1 1* 'w p( ) = Î ( ( ) ( ))

But f * w( ) is the only obstruction to the existence of a section for the principal R-bundle
f P f E X:* * , showing that f P* is trivial, and thus completing the proof of the lemma.

5. Proof of Theorem 1.2

We will need the following two auxiliary results.

LEMMA 5.1 Let R be a solvable connected Lie group and P E Z: a principal R-bundle over
the finite connected CW-complex Z, classified by Z BR:k . Let G be a connected Lie group
containing R as a normal, closed subgroup and denote by R G:i the inclusion. Assume that
the principal G-bundle over Z classified by B Z BG:i k( ) ◦ satisfies B 0:* *k i( ) =◦
H BG H Z, ,2 2� �( ) ( ) . Then, the principal R-bundle P is virtually trivial.

Proof. Let Q G R= . Since for any connected Lie group the second homotopy group vanishes
and the fundamental group is abelian, we have a short exact sequence of abelian groups

R G Q0 0,1 1 1p p p( ) ( ) ( )

inducing a split short exact sequence of �-vector spaces

Q G R0 Hom , Hom , Hom , 0.1 1 1� � �p p p( ( ) ) ( ( ) ) ( ( ) )
F

For any connected Lie group L, the group H BL,2 �( ) is naturally isomorphic to
H L L,1 1� �p( ) @ ( ) Ä . It follows that the natural map B H BG H BR: , ,2 2* � �i( ) ( ) ( ) corres-
ponds to the surjective map Φ. Therefore, the vanishing of

B H BG H Z: , ,2 2* * � �k i( ) ( ) ( )◦

implies the vanishing of

H BR H Z: , , .2 2* � �k ( ) ( )
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Using Lemma 4.1 we conclude that the principal R-bundle P is virtually trivial. □

LEMMA 5.2 Let G be a connected Lie group and let R be its radical. Suppose that the derived
group R R,[ ] is simply connected in its Lie group topology and that G/R has a finite fundamental
group. Let Gd denote the group G with the discrete topology. Then, the identity map on the under-
lying sets G G:Gi d induces the zero map H BG H BG: , ,G

2 2* � �i ( ) ( )d .

Proof. There is a short exact sequence of Lie groups

R G Q 1( )
i p

with R the radical of G and Q semisimple.

Split case. We first assume that the short exact sequence (1) is split, with Q G:s a splitting.
For a discrete group D we write H D,b* �( ) for its bounded real cohomology, and we denote by

H D H D: , ,D b* *� �q ( ) ( )

the forgetful map. Because Rd is an amenable discrete group, the inflation map

H Q H G: , ,b b b* * *� �p ( ) ( )d d

is an isomorphism (cf. Ivanov [16, Theorem 3.8.4], see also Gromovʼs Mapping Theorem [13,
Section 3.1]). Therefore, the induced maps

H Q H G H G H Q: , , , : , ,b b b b b b* * * * * *� � � �p s( ) ( ) ( ) ( )d d d d

are inverse isomorphisms. We write

H BQ H BG H BG H BQ: , , , : , ,* * * * * *� � � �p s( ) ( ) ( ) ( )d
d d

d
d d

and

H BQ H BG H BG H BQ: , , , : , ,top top* * * * * *� � � �p s( ) ( ) ( ) ( )

for the maps induced by π and σ, respectively, at the level of cohomology. We then have a com-
mutative diagram
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Notice that 0Q*i = in the diagram above because, by assumption, Q1p ( ) is finite, and thus
H BQ Q, Hom , 02

1� �p( ) @ ( ( ) ) = .
Let x H BG,2 �Î ( ). We need to show that x 0G*i ( ) = . Since R R,[ ] is simply connected, xG*i ( )

is bounded, meaning that it lies in the image of Gq (see Theorem 1.1 of [3]). Choose y such that
y xG G*q i( ) = ( ). Because y yb b* *p s= ( ), we have

x y y y y x x 0,G G G b b Q b G G Q top* * * * * * * * * * * * *( ) ( )( ) ( ) ( )i q q p s p q s p s q p s i p i s= = = = = = =d d d d d d

because 0Q*i = .

Non-split case. Now suppose that the exact sequence (1) is non-split. Let Q Q˜ be the univer-
sal cover. The pullback of G Q over Q̃ yields a short exact sequence of Lie groups

R G Q¯ ˜

which is split because Q̃ is simply connected (see Lemma 14 of [2]). The natural map p G G: ¯
is a surjective homomorphism of connected Lie groups with finite kernel K isomorphic to Q1p ( ).
Since BK is �-acyclic, the induced maps

p H BG H BG p H BG H BG: , , and : , ,top
* * * * * *� � � �( ) ( ) ( ) ( )d

d d@ @¯ ¯

are isomorphisms. From the split case we infer that H BG H BG: , ,G
2 2* � �i ( ) ( )d¯ ¯¯ is the zero

map, and thus the corresponding map G*i is zero too. □

We are now ready to complete the proof of our main result.

Proof of Theorem 1.2. As explained in the introduction, 1 2( ) ( ) for any connected Lie group.
For the proof of 2 1( ) ( ) we first consider the case of a connected complex Lie group G. Its
radical R is a complex Lie subgroup and G R Q≕ is complex semisimple, and has therefore a finite
fundamental group [14, Chapter XVII, Theorem 2.1]. By assumption, R R,[ ] is simply connected.
Let p G Q: be the projection and put Bp BG BQ:g = . Then, the map X BQ:g a◦ classi-
fies a principal Q-bundle over X which admits a flat structure, because P is flat and the diagram

commutes. By Lemma 3.2 we can find a finite connected covering space Z X:d such that the
bundle classified by Z BQ:g a d◦ ◦ is a trivial Q-bundle. The lifting property of the fibration
BR BG BQ implies that Z BG:a d◦ factors through Bi BR BG: , where i R G:
stands for the inclusion. In other words, there is a map Z BR:k , with Bi Z BG:k◦ homo-
topic to Z BG:a d◦ . We claim that the (not necessarily flat) principal R-bundle classified by

Z BR:k is virtually trivial. By Lemma 5.1 it suffices to show that

Bi H BG H Z0: , , .2 2* * � �k a d( ) = ( ) = ( ) ( )◦ ◦
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As P is flat, H BG H X: , ,2 2* � �a ( ) ( ) factors through H BG ,2 �( )d and, since by assumption
R R,[ ] is simply connected and Q is complex semisimple, Lemma 5.2 applies and implies that

H BG H BG, ,2 2� �( ) ( )d

is the zero map. Thus 0a d( )* =◦ and therefore, by Lemma 5.1, the bundle classified by
Z BR:k is virtually trivial. We now choose a finite connected covering space Y Z:m on

which the R-bundle pulls back to a trivial bundle, that is, *k m �◦ . It then follows that the
original G-bundle over X pulls back to the trivial bundle over the finite covering space

Y X:b d m= ◦ .
The following diagram, with commuting squares up to homotopy, depicts, for the convenience

of the reader, the maps described above:

This completes the proof for G a connected complex Lie group.
Let us now treat the amenable case. We need to show that for G a connected amenable

Lie group with radical R satisfying R R,1p ([ ]) = 0, every flat principal G-bundle over a finite
CW-complex X is a virtually trivial G-bundle. Let P E X: be a flat principal G-bundle, which
as a G-bundle, is classified by

X BG: .q

Using the complexification map G G:Gg
+ we obtain an associated flat principal G+-bundle

P E X:+ + , classified as a G+-bundle by the composite map

X BG BG: .
B Gr

q g +⟶ ⟶

Because of 1( ) and 3( ) of Lemma 2.1, we know that G+ is a complex Lie group with radical iso-
morphic to R+ and satisfying R R, 01p ([ ]) =+ + . Therefore, we infer from the complex case that
the bundle classified by ρ is virtually trivial. Because of 2( ) of Lemma 2.1, we know that B Gg is a
homotopy equivalence. It follows that the G-bundle classified by θ is virtually trivial too, finishing
the proof of the amenable case.

Finally, it is well known that the radical R of a connected linear Lie group can be embedded as
a closed subgroup in a group of upper triangular matrices, which implies that R R,[ ] is nilpotent
and simply connected, finishing the proof of Theorem 1.2. □
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