
CRASH-COURSE ON TOPOLOGICAL K-THEORY FOR
C*-ALGEBRAS

I. L. CHATTERJI

This text is based on the following sources, that I recommend to any
of those who want to learn the subject a little more seriously.

[1] J.B. Conway, A Course in Functional Analysis. (Basics con-
cerning C∗-algebras.)

[2] G. J. Murphy, C∗-algebras and operator theory. (Basics con-
cerning C∗-algebras, with some K-theory.)

[3] M. Takesaki, Theory of Operators algebras I. (Basics concern-
ing C∗-algebras.)

[4] J.L. Taylor, Banach Algebras and Topology. (A nice introduc-
tion to topological K-theory.)

[5] N. E. Wegge-Olsen, K-Theory and C*-algebras. (A “friendly
approach” to topological K-theory, with a lot of details worked
out carefully. Basics of C*-algebras are assumed.)

[6] A. Valette, Introduction to the Baum-Connes conjecture. (Chap-
ter 3 gives a short introduction to topological K-theory. Basics
of C*-algebras are assumed.)

1. Introduction

The aim of what follows is to give a crash-course in K-theory of C*-
algebras. This theory defines a collection of functors {Kn}n from the
category of C*-algebras to the category of abelian groups, satisfying the
Eilenberg-MacLane axioms for a homology theory1. A nice feature of
this theory is the Bott periodicity, which implies that those functors are
actually only two. The subject covered in the following sections does
work as well for any Banach algebra. The point of considering only
C*-algebras is first because my favourite mathematical objects happen
to be C*-algebras2, and secondly because this is the only generality
that one needs to have to get the link with the K-theory of topological

Date: November 7, 2002.
1This sentence is abstract nonsense, and understanding it is not required for this

text. The same applies to the rest of the Introduction.
2The reduced C*-algebra of torsion-free groups.

1



2 I. L. CHATTERJI

spaces, which turns out to be the K-theory for a particular class of C*-
algebras, namely those of the form C0(X) – the continuous functions
over a locally compact Hausdorff topological space X, vanishing at
infinity.

Warning: This text contains mistakes. Please open your eyes and
report any mistake.

2. C*-algebras

In this section we shall state some basic definitions related to C*-
algebras.

Definition 2.1. A Banach space A over C is a complete normed space
over C. If furthermore A is an algebra over C and its multiplication
satisfies the inequality ‖xy‖ ≤ ‖x‖‖y‖ for each x, y ∈ A, then A is
called a Banach algebra, and an involutive Banach algebra if it is en-
dowed with a map A→ A, x 7→ x∗ satisfying the following properties:

x∗∗ = x

(x+ y)∗ = x∗ + y∗

(αx)∗ = ᾱx∗

(xy)∗ = y∗x∗

‖x∗‖ = ‖x‖ for each x, y ∈ A, α ∈ C.

An involutive Banach algebra that satisfies the equality ‖x∗x‖ = ‖x‖2

(C*-equation) is called a C*-algebra.

Example 2.2. 1) Let X be a locally compact Hausdorff topological
space; we write C0(X) for the algebra of functions vanishing at infinity.
We recall that C0(X) consits of continuous functions f : X → C
such that for each ε > 0 there exists a compact Kε in X such that
f(x) < ε for all x outside Kε. Then C0(X), with pointwise addition
and multiplication, is an abelian C*-algebra; the involution is given by
f ∗(x) = f(x) for each f ∈ C0(X), x ∈ X and the norm is given by
‖f‖ = sup{|f(x)|, x ∈ X}. The space X is compact if and only if this
algebra has a unit (i.e. a 1 ∈ C0(X) such that 1f = f1 = f for each
f ∈ C0(X)). In this case C0(X) = C(X) the continuous functions from
X to C.

2) For n a positive integer, Mn(C) the algebra of n×n matrices with
coefficients in C is a C*-algebra for the norm

‖M‖ = sup{Mx|x is a unit vector in Cn}
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(M = (mij) ∈Mn(C)), and involution given by (mij)
∗ = (mji).

Definition 2.3. A pre-Hilbert space is a complex vector space H, en-
dowed with a scalar product, namely a map

〈 , 〉 : H×H → C

satisfying, for all v, v′, w ∈ H and λ ∈ C:

〈v, w〉 = 〈w, v〉
〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉
〈λv, w〉 = λ 〈v, w〉
〈v, v〉 ≥ 0 with equality if and only if v = 0

A Hilbert space is a complete pre-Hilbert space (with respect to the
topology coming from the scalar product). We get a norm on H by

setting ‖v‖ =
√
〈v, v〉 for v ∈ H.

Example 2.4. For any integer n, Cn is a Hilbert space (of finite di-
mension n). For S any set, consider

`2(S) = {f : S→ C such that
∑
n∈S

|f(n)|2 <∞},

one defines a scalar product as follows (for f, g ∈ `2(S))

〈f, g〉 =
∑
n∈S

f(n)g(n).

Denote by δs the element of `2(S) taking value 1 in s ∈ S and 0 oth-
erwise (we call the Dirac functions), {δs}s∈S is called Hilbert basis, as
any element of `2(S) can be expressed as an infinite linear combination
of the δs’s, with square summable coefficients. Any infinite dimen-
sional Hilbert space with countable basis is isomorphic to `2(N), and
any Hilbert space admits an orthonormal basis (but not necessarily
countable). We shall only consider separable Hilbert spaces.

Remark 2.5. Let H be a Hilbert space, the algebra B(H) of bounded
linear maps from H to itself is a C*-algebra for the operator norm:

‖P‖ = sup{Px such that x is a unit vector in H}
(P ∈ B(H)). Any such operator has a unique adjoint, namely an
element P ∗ ∈ B(H) such that for any v, w ∈ H

〈Pv,w〉 = 〈v, P ∗w〉
The involution is the map sending an operator to its adjoint. This
C*-algebra is non abelian as soon as the dimension of H exceeds one.
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More generally, any closed sub-*-algebra A of B(H) (that is any closed
sub-algebra of B(H) which is invariant under taking the adjoint) is a
C*-algebra. Conversely, any C*-algebra can be seen as a closed sub-
*-algebra of bounded operators on a Hilbert space, using the GNS
(Gelfand-Naimark-Segal) construction, see [3] or [1].

Example 2.6. 1) As a concrete illustration of the previous remark,
one considers a discrete group Γ, and the Hilbert space

`2(Γ) = {f : Γ→ C such that
∑
γ∈Γ

|f(γ)|2 <∞}.

We mention the following important subalgebras of B(`2(Γ)):
The reduced C*-algebra of Γ, denoted by C∗r (Γ) which is the closure

(for the operator norm) of the *-algebra generated operators of the
form Lγ(f)(µ) = f(γ−1µ), for f ∈ `2(Γ), γ, µ ∈ Γ. This amounts to
embedding the group ring CΓ in B(`2(Γ)) by letting elements act by
left convolution, and then close this embedding with respect to the
operator norm on B(`2(Γ)).

The von Neumann algebra of Γ, denoted by N (Γ) which consists of
all elements P ∈ B(`2(Γ)) commuting with {Lγ|γ ∈ Γ}.

2) On the other hand, given a discrete group Γ we might want to
look at `1(Γ) with the `1 norm (‖f‖ =

∑
γ∈Γ |f(γ)| for each f ∈ `1(Γ)).

This is an involutive Banach algebra but not a C*-algebra. Again the
involution can be expressed as f ∗(γ) = f(γ−1), but the C*-equation
is not fulfilled by f = e + ix in case x2 = e (for e being the neutral
element of Γ), or by f = e+ x− x2 in case x 6= x2 6= e.

3) Example 1) extends to a locally compact topological group G as
follows: take µ a Haar measure on G, then look at Cc(G) the continuous
functions with compact support as acting by left convolution on the
Hilbert space of square integrable functions L2(G,µ). In this way Cc(G)
embeds in B(L2(G,µ)), and closing it with respect to the operator norm
yields the reduced C*-algebra of G.

Remark 2.7. In the definition of C*-algebra we did not require the
existence of a unit, but it can be added in the following way: We
consider the set AI = {(a, λ)|a ∈ A, λ ∈ C} with operations given as
follows:

(a, λ) + (b, µ) = (a+ b, λ+ µ) for all a, b ∈ A, λ, µ ∈ C

(a, λ)(b, µ) = (ab+ µa+ λb, λµ) for all a, b ∈ A, λ, µ ∈ C

(a, λ)∗ = (a∗, λ̄)
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Then the unit is (0, 1) and the norm is given by ‖(a, λ)‖ = sup{‖(xy+
λy‖, ‖y‖ = 1}, that is, the operator norm of AI acting on A. (The `1

norm given by ‖(a, λ)‖ = ‖a‖+ ‖λ‖ would turn AI into a Banach alge-
bra which will not necessarily be a C*-algebra, see previous example.)

Any homomorphism ϕ : A → B between C*-algebras determines a
unital homomporphism ϕI : AI → BI by ϕI(a + λ) = ϕ(a) + λ, for
each a ∈ A, λ ∈ C}.
Example 2.8. Let A = C0(X) for X a locally compact non compact
topological space, then AI corresponds to C(X+) (continuous functions
on X+), where X+ is the one point compactification of X and C0(X) ⊂
C(X+) is the closed ideal of functions vanishing at the added point.

Definition 2.9. For a C*-algebra A with unit let us denote by G(A)
the set of invertible elements of A. It is a group under multiplication,
and even a topological group (for the topology induced by the one of
A), open in A. We will write G0(A) for the connected component of
the unit in G(A).

Now let a be an element of A, we define the exponential of a by the
absolutely convergent serie

ea =
∞∑
n=0

an

n!
.

It is an element of G(A), whose inverse is given by e−a.

Remark 2.10. If two elements a and b of A commute, then ea+b =
eaeb. Let us consider a 7→ e2πia = exp(a), that maps the abelian
additive group (A,+) to the multiplicative (possibly non abelian) group
(G(A), ·). This is in general not a group homomorphism.

Proposition 2.11. Let A be a C*-algebra with unit, written 1. Then

G0(A) =< exp(A) >,

where G0(A) is the connected component of the unit in G(A), and <
exp(A) > is the multiplicative subgroup of G(A) generated by elements
of the form ea for a ∈ A.

Proof. To begin with, < exp(A) > is non empty since 1 = e0, which
lies in < exp(A) >.

Then < exp(A) > is arc-wise connected since each element x of
< exp(A) > can be expressed as x = ea1 . . . ean , where a1 . . . an ∈ A
and thus is connected to the identity by the arc x(t) = eta1 . . . etan ,
where t ∈ [0, 1].

Now < exp(A) > is open in G(A), because for an a ∈ A satisfying
‖1 − a‖ < 1 the convergent serie −

∑∞
n=1

1
n
(1 − a)n gives a logarithm
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for a and thus an open neighbourhood V of 1 in exp(A). The mul-
tiplication by any element of G(A) being a homeomorphism, for each
b ∈< exp(A) >, V b will be an open neighbourhood of b in < exp(A) >.

Finally < exp(A) > is closed in G(A) for it is an open subgroup of
G(A). �

3. The functor K1

For this section, A is a C*-algebra, with unit (unless specified).

Definition 3.1. For each n ∈ N we will write Mn(A) for the C*-
algebra of n × n matrices with coefficients in A. The norm is the
operator norm that we get by considering Mn(A) as an algebra of
operators on ⊕nA (for a = (a1, . . . , an) ∈ ⊕nA, one defines ‖a‖ =√
‖a1‖2 + · · ·+ ‖an‖2). We will write GLn(A) for the multiplicative

group of invertible elements of Mn(A) (this is G(Mn(A)) following the
notations given in the previous section). Let m,n ∈ N and a ∈Mn(A),

b ∈Mm(A), then a⊕ b is defined as the matrix

(
a 0
0 b

)
in Mn+m(A),

and is called trivial extension of a any matrix of the form a⊕I ∈Mk(A)
for k > n, and I the identity of Mk−n(A). In this way we can embed
GLn(A) in GLn+1(A) and define

GL(A) = lim
→
GLn(A)

Remark 3.2. We recall that a direct system of groups is a family
(Cα, fαβ)α∈φ indexed by a partially ordered filtering set φ, where fαβ :
Cα → Cβ are group homomorphisms satisfying the conditions that fαα
is the identity and fαβfβγ = fαγ when α ≤ β and for each α ≤ β ≤ γ.
For such a direct system, the direct limit, denoted by lim→Cα is a
family (L, fα) again indexed by φ, where for each α ∈ φ, one has
fα : Cα → L satisfies fβfαβ = fα and is universal in the sense that if
(D, gα) is another object satisfying the two previous conditions, then
one can find a ϕ : D → L such that gαϕ = fα for each α ∈ φ.

In our case the family (GLn(A), · ⊕ I)n∈N is clearly a direct system
of groups, and its direct limit is the object we are interested in. We
might want to think about this direct limit as the infinite dimensional

matrices of the form

(
a 0
0 I

)
, where a belongs to GLn(A) for an

n ∈ N and I is an infinite dimensional identity.

Proposition 3.3. Let n ∈ N and a, b ∈ Gln(A), then ab⊕I and ba⊕I
are in the same connected component of GL2n(A).
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Proof. The matrix

(
1 0
0 1

)
is connected to

(
0 −1
1 0

)
by the arc

t 7→
(

cos t − sin t
sin t cos t

)
in GL2(C), and the matrix

(
0 −1
1 0

)
is con-

nected to

(
0 1
1 0

)
by the arc t 7→

(
0 eit

1 0

)
in GL2(C), and this

fact extended to the n × n matrices shows that shuffeling rows and
colums of a matrix of GLn(C) will not change connected component.
Hence ab⊕ I = (a⊕ I)(b⊕ I) is in the same connected component to
(a ⊕ I)(I ⊕ b) = a ⊕ b, which is connected to b ⊕ a and I ⊕ ba by the
same argument. �

Definition 3.4. For n ≥ 1, define the n-th K-group of A by

Kn(A) = πn−1(A).

Remark 3.5. Proposition 3.3 shows that K1(A) is an abelian group.
We shall defineK0(A) in the next section, and we shall see thatKn(A) =
Kn+2(A) for any n ≥ 0 (this is Bott periodicity), so that there are ac-
tually only two of those functors.

Proposition 3.6. The group K1(C) is trivial.

Proof provided by G. Valette. It is enough to show that for any n, GLn(C)
is connected. To do this, take a matrix A ∈ GLn(C) and consider
Az = (1− z)I + zA. There are at most n points in C where Az is not
invertible (those are the zeros of the caracteristic polynomial of A), so
that we conclude by connectedness of C minus n points. �

Until now we assumed and widely used the fact that our C*-algebra
A had a unit, but we’ll now define K-groups for any C*-algebra A.

Definition 3.7. The n-th K-group of A is given by the kernel of ϕ∗ :
K1(AI) → K1(C), and again denoted by K1(A), where ϕ∗ is induced
by ϕ : AI → C.

Remarks 3.8. Since we just saw that K1(C) is trivial, we now have
that K1(A) = K1(AI). Furthermore, A→ AI being a functor from the
category of C*-algebras to the category of unital C*-algebras, it means
that we just extended K1 to a functor from the category of C*-algebras
to the category of abelian groups.

Proposition 3.9 (Weak exactness). Let J ⊂ A be a closed ideal. The
exact sequence 0 → J → A → A/J → 0 induces an exact sequence
K1(J )→ K1(A)→ K1(A/J ).
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Proof. First we extend i : J → A and π : A → A/J to i : JI → AI
and π : AI → (A/J )I , so that π · i sends JI on C, and K1(C) being
trivial, we conclude that π∗ · i∗ = 0, that is to say im(i∗) ⊂ ker(π∗).

For the other inclusion, notice that an element u in the kernel of π∗

can be written as u = [a ⊕ I], where a is an element of Gln(AI) such
that π(a) belongs to GL0

n(AI/J ), which means that π(a) = ea1 . . . eam ,
with the ai’s in Mn(AI/J ). Setting b = e−bm . . . e−b1a where the bi’s
are in Mn(AI) pre-images of the ai’s, we have that b is an element of
GLn(AI), that [b⊕ I] = u (since b differs from a by elements belonging
to GL0

n(AI)), and that b ∈ GLn(JI) (since π(b) = I), so that u ∈
im(i∗). �

4. The functor K0

Definition 4.1. A semi-group is a set S endowed with an associative
law S×S → S, we call it abelian whenever this law is commutative. Let
S be an abelian semi-group, then there exists an abelian group U(S)
called the universal group associated to S and a map µ : S → U(S)
such that for each group G and map ϕ : S → G there is a unique
homomorphism ϕ̃ : U(S)→ G satisfying ϕ̃ ◦ µ = ϕ.

Remark 4.2. For a given semi-group S, the group U(S) can be canon-
ically built as follows: Consider S × S with the equivalence relation
(x, y) ∼ (u, v) if it exists an element r ∈ S such that x+v+r = y+u+r
and define U(S) = S × S/ ∼. Then (x, x) will be the neutral element
and (y, x) the inverse of (x, y). The map µ : S → U(S) is given by
x 7→ [(x+ r, r)], and for a group G and map ϕ : S → G, the homomor-
phism ϕ̃ : U(S)→ G will be ϕ̃(x, y) = ϕ(x)− ϕ(y).

Definition 4.3. For each n ∈ N let Pn(A) be the set of idempotent
matrices of Mn(A). Let us consider ∪n∈NPn(A) with the following
equivalence relation: p ∈ Pn(A) and q ∈ Pm(A) (for m,n ∈ N) are
equivalent (p ∼ q) if one can find k ∈ N, k ≥ n,m and u ∈ Glk(A)
such that p⊕0k−n = u(q⊕0k−m)u−1 (the element p⊕0k−n is called trivial
extension of p, and this equivalence relation means that we require p
and q to be similar up to trivial extensions). Now ∪n∈NPn(A)/ ∼ is
an abelian semi-group with the direct sum ⊕ (as previously defined) as
associative law, and we define K0(A) as its associated universal group.

Remark 4.4. Straight from the construction of K0(A) and from the
previous remark about universal group of a semi-group, by taking G =
K0(A) and ϕ = µ we see that each element in K0(A) is written as a
difference of two classes of idempotents [p] − [q], for some p ∈ Pn(A)
and q ∈ Pm(A). Which means that such two idempotents define the
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same element in K0(A) if, and only if one can find a third idempotent
r such that p⊕ r ∼ q ⊕ r.

Furthermore, since [p] − [q] = [p] − [q] + [q + Ik − q] − [Ik] = [p] −
[q] + [q] + [Ik− q]− [Ik] = [p] + [Ik− q]− [Ik] = [p⊕ (Ik− q)]− [Ik] if Ik
denotes the k × k identity matrix, we have that any element in K0(A)
can be written as written as [p]− [Ik], for some p ∈ Pn(A) and k ∈ Z.

At this point we are able to compute K0(C):

Proposition 4.5. We have that K0(C) = Z.

Proof. The map
Z → K0(C)
n 7→ sign(n)([I|n|]− [0])

is injective, and since each idempotent matrix p ∈Mn(C) is similar to
a diagonal idempotent matrix with coefficients in C, that is a matrix
of the form Ik ⊕ 0n−k for k ≤ n we get the surjectivity. �

Again until now we assumed and widely used the fact that our C*-
algebra A had a unit, but we will now define K0(A) for any C*-algebra
A.

Definition 4.6. The groupK0(A) is given by the kernel of ϕ∗ : K0(AI)→
K0(C) ' Z, where the map ϕ∗ is induced by ϕ : AI → C (whose kernel
is A).

The following lemma shows that the topology of A enters somehow
automatically in K0(A).

Lemma 4.7. Let A be a unital C∗-algebra (the lemma also works for
a unital Banach algebra) and e, f be two idempotents in Mn(A) such

that ‖e − f‖ < 1

‖2e− 1‖
. Then there exists an element z ∈ GLn(A)

such that f = z−1ez. In particular, e and f define the same class in
K0(A).

Proof. Set

z =
1

2
((2e− 1)(2f − 1) + 1).

Then 1 − z = (2e − 1)(e − f), so that ‖1 − z‖ < 1 and therefore z is
invertible. Moreover, ez = zf(= ef). �

Proposition 4.8 (Weak exactness). Let J ⊂ A be a closed ideal. The
exact sequence 0 → J → A → A/J → 0 induces an exact sequence
K0(J )→ K0(A)→ K0(A/J ).

In order to proceed with the proof we need the following lemma:
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Lemma 4.9. Let A have a unit. Given an a ∈ G(A), we have that
a ∈ G0(A) if and only if for each surjective homomorphism B → A
(where B is a Banach algebra), a is the image of an invertible element
of B.

Proof of the lemma. If a ∈ G0(A) then a = ea1 . . . ean , with b1 . . . bn
pre-images of the ai’s. Then b = eb1 . . . ebn is invertible and pre-image
of a.

Conversely, consider B = {f ∈ C([0, 1], A) | f(0) = λ ·1 for a λ ∈ C}
with the supremum norm. Then f 7→ f(1) is surjective (for f(t) =
(1 − t) · 1 + ta is pre-image of an a ∈ A), and if an f pre-image of a
is invertible, that means that f(t) ∈ G(A) for each t ∈ [0, 1] and thus
f(t)t∈[0,1] is a path from a to 1 in G(A). �

Proof of the proposition. Again we first extend i : J → A and π :
A → A/J to i : JI → AI and π : AI → (A/J )I , so that π · i
maps JI on C, which means that the induced map π∗ · i∗ : K0(JI)→
K0(AI/J ) extends the map K0(JI)→ K0(C), whose kernel is K0(J )
(by definition).

Conversely, given c ∈ K0(A), c = [p] − [In] with π∗(c) = 0 means
that p and In are conjugate in K0(A/J ) ⊂ K0(AI/J ) (up to trivial ex-
tensions). The conjugation can be done trough an element of GL0

m(AI)
provided m ∈ N big enough (for u ∈ GLk(A/J ), u⊕u−1 ∈ GL0

2k(A/J )
and π∗(p) = uqu−1 implies π∗(p) ⊕ 0 = (u ⊕ u−1)(q ⊕ 0)(u ⊕ u−1)−1),
so by the previous lemma we can lift this element to an element v in
GLk(AI), and vpv−1 is [In] modulo J , which means that [p] (and thus
c) is in the image of i∗. �

5. Matching K0 and K1.

In this section we will see how the two functors K0 and K1 match
together.

Proposition 5.1 (long exact sequence). Let J ⊂ A be a closed ideal,
one has the following exact sequence:

K1(J )→ K1(A)→ K1(A/J )→ K0(J )→ K0(A)→ K0(A/J ).

We will not give the proof but just explain roughly how it works, for
the proof see [4] or [5].

We only need to build a homomorphism δ∗ : K1(A/J ) → K0(J ),
and this is done as follows; given a ∈ Glk(A/J ), we know that a⊕a−1 ∈
G0(M2k(A/J )) has a pre-image u ∈ Gl2k(A). Let p = u(Ik ⊕ 0k)u

−1 ∈
P2k(JI) (see last proof of the previous section), we define δ∗([a]) =
[p] − [Ik]. One now has to check that this is well defined (we chose a
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and u), that δ∗([a]) belongs to K0(J ), that this is a homomorphism
and the exactitude in K1(A/J ) and K0(J ).

Definition 5.2. The cone on a C*-algebra A is the set CA = {f ∈
C([0, 1], A) | f(0) = 0}. It is a C*-algebra (for point-wise operations
and supremum norm) while the suspension of A is the set SA = {f ∈
C([0, 1], A) | f(0) = f(1) = 0}, which is again a C*-algebra for point-
wise operations and supremum norm.

Proposition 5.3. There is a natural isomorphism between K1(A) and
K0(SA).

Proof. The C*-algebra SA being a closed ideal of CA and the map
f 7→ f(1) a surjective homomorphism from CA → A whose kernel is
SA, that enables us to identify A with CA/SA. Using the long exact
sequence we have that

K1(SA)→ K1(CA)→ K1(A)→ K0(SA)→ K0(CA)→ K0(A).

Then for each f ∈ CA, setting ϕsf(t) = f(st) we get s 7→ ϕs a
continuous path in End(CA) from 0 to 1 (that is, ϕ1f = f and ϕ0f = 0
which extends to CAI as usual by ϕ̃s(f + λ) = ϕs(f + λ)), and that
allow us to deform any matrix of ∪nPn(CAI) and ∪nGln(CAI) into a
scalar matrix, which brings us back to the case of C and shows that
K1(CA) = K1(CAI) = K1(C) = 0 while K0(CA) = ker(K0(CAI) →
K0(C)) = ker(Z→ Z) = 0 (for the K0 case, it is just Lemma 4.7). So
we end up with the following exact sequence of groups:

0→ K1(A)→ K0(SA)→ 0

which gives the seeked isomorphism. �

Remark 5.4. We recall that a C*-algebra A is contractible if there ex-
ists a path in End(A) connecting the zero map to the identity map. No-
tice that C is not contractible as a C*-algebra, but that SA (although
in general not contractible) will be contractible if A is contractilble.
The cone CA is always contractible (see proof above). More generally,
the C*-algebra of continuous functions on a topologically contractible
space X with target A, vanishing at one point is always contractible.

Proposition 5.5. There is a natural isomorphism between K0(A) and
K1(SA).

The fairly long proof of this proposition will not be given here, it
is done either in [4] or in [5]. However, we will roughly talk about an
important map, namely the Bott map βA : K0(A) → K1(SA) defined
as follows:
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For a given idempotent p ∈Mn(A) define

fp : [0, 1] → GLn(AI)

t 7→ e2πitp

Since e2πitp = I + (e2πitp− 1)p, we have that fp(0) = fp(1) = I, so that
fp ∈ Mn((SA)I), and fp(t)fp(1 − t) = e2πip = I implies that actually
fp ∈ GLn((SA)I), so now we define:

βA : K0(A) → K1(SA)

[p]− [q] 7→ [fpf
∗
q ],

which is called the Bott map. It is the natural isomorphism between
K0(A) and K1(SA).

This result, combined with the previous one, drives us straight to
the central theorem of K-theory:

Theorem 5.6 (Bott periodicity). There is a natural isomorphism

Kn(A) ' Kn+2(A)

for each n ≥ 0.

Proof. Combining Proposition 5.3 and 5.5 gives Ki(A) ' Ki(S
2A)

for i = 0, 1 (where S2A = SSA). Since for n ≥ 1 πn(GL(A)) =
πn−1(SGL(A)) = πn−1(GL(SA)), it implies that Kn(SA) = Kn+1(A).
For n = 0, just use Proposition 5.5 once again. �

We reach an important corollary:

Corollary 5.7. Let I ⊂ A be a closed ideal. There is a repeating long
exact sequence

· · · → K1(A)→ K1(A/J )→ K0(J )→ K0(A)→ K0(A/J )→ K1(J )→ . . .

Remark 5.8. For a given locally compact topological space X, setting
Kp(X) = K0(C0(X)) for p even, and Kp(X) = K1(C0(X)) for p odd
gives the K-theory of topological spaces.

6. Further bibliography

We mention the following litterature dealing with topological K-
theory for C∗ or Banach algebras. The list is non exhaustive.

• M. Rørdam, F. Larsen, N. Laustsen. An introduction to K-
theory for C∗-algebras. London Mathematical Society Student
Texts, 49. Cambridge University Press, Cambridge, 2000. xii+242
pp. ISBN: 0-521-78334-8; 0-521-78944-3.
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• P. A. Fillmore. A user’s guide to operator algebras. Cana-
dian Mathematical Society Series of Monographs and Advanced
Texts. A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, 1996. xiv+223 pp. ISBN 0-471-31135-9
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