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Abstract

We study the acylindrical hyperbolicity of groups acting by isometries on

CAT(0) cube complexes, and obtain simple criteria formulated in terms

of stabilisers for the action. Namely, we show that a group acting essen-

tially and non-elementarily on a finite dimensional irreducible CAT(0)

cube complex is acylindrically hyperbolic if there exist two hyperplanes

whose stabilisers intersect along a finite subgroup. We also give further

conditions on the geometry of the complex so that the result holds if

we only require the existence of a single pair of points whose stabilisers

intersect along a finite subgroup.

7.1 Introduction

A group is called acylindrically hyperbolic if it is not virtually cyclic and

admits an acylindrical action with unbounded orbits on a hyperbolic

geodesic metric space. Acylindrically hyperbolic groups form a large class

of groups, introduced by Osin [O2], displaying strong hyperbolic-like

features: they encompass mapping class groups of hyperbolic surfaces

[B], relatively hyperbolic groups [O1], the plane Cremona group [CL, L],
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and many more. The notion of acylindrical hyperbolicity has gathered a

lot of interest in recent years due to the strong algebraic and analytical

consequences it implies for the group (we refer to [O2] and details therein).

In this article, we study the acylindrical hyperbolicity of groups acting

by isometries on CAT(0) cube complexes. Our goal is to obtain simple

acylindrical hyperbolicity criteria for such groups. Recall that an action

on a CAT(0) cube complex X is called essential if no orbit remains

at bounded distance from a half-space of X, and that it is called non-

elementary if it does not admit a finite orbit in X ∪ ∂∞X.

Our first criterion is formulated in terms of hyperplanes stabilisers,

and generalises to finite dimensional CAT(0) cube complexes a criterion

due to Minasyan–Osin for actions on simplicial trees [MO]:

Theorem 7.1.1 Let G be a group acting on an irreducible finite-

dimensional CAT(0) cube complex essentially and non-elementarily. If

there exist two hyperplanes whose stabilisers intersect along a finite sub-

group, then G is acylindrically hyperbolic.

In the previous theorem, we do not require the two hyperplanes to

be disjoint, or even distinct. In particular, the conclusion holds if there

exists a hyperplane of X whose stabiliser is weakly malnormal, i.e. it

intersects some conjugate along a finite subgroup.

It should be noted that the above theorem does not reduce to the

aforementioned criterion of Minasyan–Osin, as groups acting on CAT(0)

cube complexes do not virtually act on a simplicial tree a priori.

Anthony Genevois has also obtained criteria for acylindrical hyperbol-

icity of a similar flavour, using different tools. In particular, his approach

can be used to recover Theorem 7.1.1, see [G2, Remark 21].

We give an application of Theorem 7.1.1 to Artin groups of FC type,

suggested to us by Ruth Charney. Artin groups span a large range of

groups, and include for instance free groups, braid groups, and free

abelian groups, as well as many more exotic groups. Artin groups and

their subgroups are a rich source of examples and counterexamples of

interesting phenomena in geometry and group theory.

Theorem 7.1.2 Non-virtually cyclic Artin groups of FC type whose

underlying Coxeter graphs have diameter at least 3 are acylindrically

hyperbolic.

Artin groups of FC type and the proof of the above theorem will be

discussed in Section 7.5. In the case of Artin groups of FC type whose

Coxeter graphs have diameter 1, i.e. Artin groups of finite type, Calvez
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and Wiest [CW] showed, using different techniques, that the quotient of

such groups by their centre is acylindrically hyperbolic.

As a corollary of Theorem 7.1.1, we obtain the following results for

actions satisfying a weak notion of acylindricity or properness:

Corollary 7.1.3 Let G be a group acting on an irreducible finite-

dimensional CAT(0) cube complex X essentially and non-elementarily.

Assume that the action is non-uniformly weakly acylindrical, that is, there

exists a constant L ≥ 0 such that only finitely many elements of G fix two

points of X at distance at least L. Then G is acylindrically hyperbolic.

Corollary 7.1.4 A group acting essentially, non-elementarily, and

with finite vertex stabilisers on a finite dimensional irreducible CAT(0)

cube complex is acylindrically hyperbolic.

Corollary 7.1.3 was already known if the complex is in addition assumed

to be hyperbolic (see [M1] for the proof in dimension 2 and [G1] for the

general case). Corollary 7.1.4 was already known if in addition the action

is assumed to be metrically proper, by work of Caprace–Sageev on the

existence of rank one isometries of CAT(0) cube complexes [CS]. Anthony

Genevois informed us that he found independently similar results, using

different techniques [G2].

In Theorem 7.1.1 and its corollaries, the essentiality assumption could

be weakened to the assumption that the essential core is irreducible, a

condition that is a priori non-trivial to check. Notice however that the

other assumptions cannot be removed. The non-acylindrically hyperbolic

group Z acts properly and essentially, but elementarily, on the real line

with its standard simplicial structure. The groups of Burger–Mozes pro-

vide examples of cocompact lattices in the product of two trees whose

associated actions are essential, non-elementary, and without fixed point

at infinity, yet these groups are not acylindrically hyperbolic as they are

simple [BM]. Thompson’s groups V and T act properly, non-elementarily,

and without fixed point at infinity on an infinite dimensional irreducible

CAT(0) cube complex [F], but are not acylindrically hyperbolic as they

are also simple.

We also obtain stronger criteria, that allow us to deduce the acylindrical

hyperbolicity of a group from information on the stabilisers of a single

pair of points (see Theorem 7.4.2 for the general statement). For this,

we impose further conditions on the complex: we say that a CAT(0)

cube complex is cocompact if its automorphism group acts cocompactly
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on it, and we say that it has no free face if every non-maximal cube is

contained in at least two maximal cubes. We prove the following:

Theorem 7.1.5 Let G be a group with an essential and non-elementary

action on an irreducible finite-dimensional cocompact CAT(0) cube com-

plex with no free face. If there exist two points whose stabilisers intersect

along a finite subgroup, then G is acylindrically hyperbolic.

To show the acylindrical hyperbolicity of a group G through its action

on a geodesic metric space X, a useful criterion introduced by Bestvina–

Bromberg–Fujiwara [BBF, Theorem H] is to find an infinite order element

of the group whose orbits are strongly contracting and which satisfies

the so-called WPD condition. However, this condition, formulated in

terms of coarse stabilisers of pairs of points, is generally cumbersome to

check for actions on non-locally finite spaces. In [M2], the second author

introduced a different criterion involving a weakening of this condition

formulated purely in terms of stabilisers of pairs of points, making it

much more tractable (see Theorem 7.2.3 for the exact formulation). The

price to pay is to find group elements satisfying a strengthened notion of

contraction of their orbits, called über-contractions. The second author

showed that such contractions abound for actions on non-locally compact

spaces under mild assumptions on the stabilisers of vertices, and used

it to show the acylindrical hyperbolicity of the tame automorphism

group of an affine quadric threefold, a subgroup of the Cremona group

Bir(P3(C)). In this article, we provide a different way to construct über-

contractions for groups acting on CAT(0) cube complexes, this time

using the very rich combinatorial geometry of their hyperplanes. This

construction relies heavily on the existence of hyperplanes with strong

separation properties, called über-separated hyperplanes, and introduced

by Chatterji–Fernós–Iozzi [CFI]. Such hyperplanes were used to prove a

superrigidity phenomenon for groups acting non-elementarily on CAT(0)

cube complexes.
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7.2 Über-contractions and acylindrical hyperbolicity

Recall that, given a group G acting on a geodesic metric space X, the

action is called acylindrical if for every r ≥ 0 there exist constants

L(r),N(r) ≥ 0 such that for all points x, y of X at distance at least L(r),

∣{g ∈ G∣d(x, gx) ≤ r, d(y, gy) ≤ r}∣ ≤ N(r).

A group is acylindrically hyperbolic if it is not virtually cyclic and admits

an acylindrical action with unbounded orbits on a hyperbolic geodesic

metric space. Given a group action on an arbitrary geodesic space, the

following criterion was introduced by Bestvina–Bromberg–Fujiwara to

prove the acylindrical hyperbolicity of the group:

Theorem 7.2.1 ([BBF, Theorem H]) Let G be a group acting by

isometries on a geodesic metric space X. Let g be a group element of

infinite order with quasi-isometrically embedded orbits, and assume that

the following holds:

● the group element g is strongly contracting, that is, there exists a point

x of X such that the closest-point projections on the ⟨g⟩-orbit of x
of the balls of X that are disjoint from ⟨g⟩x have uniformly bounded

diameter,

● the group element g satisfies the WPD condition, that is, for every

r ≥ 0 and every point x of X, there exists an integer m such that only

finitely many elements h of G satisfy d(x,hx), d(gmx,hgmx) ≤ r.

Then G is either virtually cyclic or acylindrically hyperbolic.

The following notion, introduced in [M2], provides an easier way to

prove the acylindrical hyperbolicity of a group.
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Definition 7.2.2 Let X be a geodesic metric space and let h be an

isometry of X with quasi-isometrically embedded orbits. A system of

checkpoints for h is the data of a finite subset S of X, the checkpoint, as

well as an error constant L ≥ 0 and a quasi-isometry f ∶ Λ ∶= ⋃i∈Z hiS → R
such that we have the following:

Let x, y be points of X and let x′, y′ be closest-point projections on Λ

of x, y respectively. For every checkpoint Si ∶= hiS, i ∈ Z, such that:

● Si coarsely separates x′ and y′ , i.e. f(x′) and f(y′) lie in different

unbounded connected components of R ∖ f(Si),
● Si is at distance at least L from both x′ and y′,

then every geodesic between x and y meets Si.

A hyperbolic isometry h of X is über-contracting, or is an über-

contraction, if it admits such a system of checkpoints.

We will be using the following criterion for acylindrical hyperbolicity:

Theorem 7.2.3 (Theorem 1.2 of [M2]) Let G be a group acting by

isometries on a geodesic metric space X. Let g ∈ G be an infinite order

element such that the following holds:

(i) the group element g is über-contracting with respect to a system of

checkpoints (giS)i∈Z,
(ii) there exists a constant m0 such that for every point s ∈ S and every

m ≥m0, only finitely many elements of G fix s and gms pointwise.

Then G is either virtually cyclic or acylindrically hyperbolic.

Note that condition (ii) of the previous theorem is a considerable

weakening of the WPD condition for g.

This weaker condition has the advantage of involving only stabilisers

of pairs of points, which makes it much easier to use.

7.3 Über-separated hyperplanes and the proof of
Theorem 7.1.1

We now recall a few basic facts concerning CAT(0) cube complexes, and

more precisely the notions of bridges and über-separated pairs, which

are crucial to prove Theorems 7.1.1 and 7.1.5. The missing details and

proofs can be found in [CFI].

By a slight abuse of notation, we will identify a CAT(0) cube complex
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with its vertex set endowed with the graph metric coming from its 1-

skeleton. Each hyperplane separates the vertex set into two disjoint

components, which we refer to as halfspaces.

The following notion was introduced by Behrstock–Charney in [BC]:

Definition 7.3.1 Two parallel hyperplanes of a CAT(0) cube complex

are said to be strongly separated if no hyperplane is transverse to both. By

the usual abuse of terminology, we say that two halfspaces are strongly

separated if the corresponding hyperplanes are.

We will need tools introduced by Caprace–Sageev [CS]. Recall that a

family of n pairwise crossing hyperplanes divides a CAT(0) cube complex

into 2n regions called sectors.

Lemma 7.3.2 (Caprace–Sageev [CS, Proposition 5.1, Double-Skewering

Lemma, Lemma 5.2]) Let X be a finite dimensional irreducible CAT(0)

cube complex and let G → Aut(X) be a group acting essentially and

without fixed points in X ∪ ∂∞X.

● (Strong Separation Lemma) Let h1 be a halfspace of X. Then there

exists a halfspace h2 such that h1 ⊂ h2 and such that h1 and h2 are

strongly separated.

● (Double-Skewering Lemma) Let h1 ⊂ h2 be two nested halfspaces. Then

there exists an element g ∈ G that double-skewers h1 and h2, that is,

such that h1 ⊂ h2 ⊂ gh1.

● (Sector Lemma) Let ĥ1, ĥ2 be two transverse hyperplanes. Then we

can choose two disjoint hyperplanes ĥ3 and ĥ4 that are contained in

opposite sectors determined by ĥ1 and ĥ2.

We will need a finer notion of strong separation of halfspaces, which is

less standard but will be key to our work.

Definition 7.3.3 Two strongly separated halfspaces h1 and h2 are

said to be an über-separated pair if for any two halfspaces k1, k2 with

the property that hi and ki are transverse for i = 1,2, then k1 and

k2 are parallel. We say that two strongly separated hyperplanes are

über-separated if their halfspaces are.

Note that pairs of über-separated hyperplanes correspond exactly to

pairs of hyperplanes at distance at least 4 in the intersection graph.

Remark 7.3.4 If h ⊂ k ⊂ � are pairwise strongly separated halfspaces,

then h and � are über-separated.
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Notice that über-separated pairs are in particular strongly separated

and hence they do not exist in the reducible case by [CS, Proposition 5.1].

The existence of über-separated hyperplanes is a consequence of the

Double-Skewering Lemma 7.3.2. We will need the following lemma, which

is a direct consequence of the Double-Skewering Lemma 7.3.2 and [CFI,

Lemma 2.14]:

Lemma 7.3.5 Let X be a finite dimensional irreducible CAT(0) cube

complex and G→ Aut(X) a group acting essentially and non-elementarily.

Given any two parallel hyperplanes ĥ1 and ĥ2, there exists g ∈ G that

double-skewers ĥ1 and ĥ2 and such that ĥ1 and gĥ1 are über-separated.

For two points x, y of X, we denote by I(x, y) the interval between x

and y, that is, the union of all the geodesics between x and y. Recall that

intervals are finite, as they only depend on the (finite) set of hyperplanes

separating the given pair of points.

Definition 7.3.6 Let h1 ⊂ h2 be a nested pair of halfspaces. The

(combinatorial) bridge between ĥ1 and ĥ2, denoted b(ĥ1, ĥ2), is the union
of all the geodesics between points x1 ∈ h1 and x2 ∈ h∗2 minimizing the

distance between h1 and h∗2.

Lemma 7.3.7 (Lemma 2.18 and 2.24 [CFI]) If h1 ⊂ h2 are a pair of

nested halfspaces, strongly separated, there exists a unique pair of points

of h1 × h∗2, called the gates of the bridge, that minimizes the distance

between h1 and h∗2, i.e. there exist points x1 ∈ h1 and x2 ∈ h∗2 such that

b(ĥ1, ĥ2) = I(x1, x2).

In particular, the bridge between two strongly separated hyperplanes is

finite. Moreover, the following holds for any y1 ∈ h1 and y2 ∈ h∗2.

d(y1, y2) = d(y1, x1) + d(x1, x2) + d(x2, y2).

The following is a very important feature of über-separated pairs.

Lemma 7.3.8 (Proof of Lemma 3.5 of [CFI]) Let h1 ⊂ h2 be an über-

separated pair of halfspaces, x ∈ h1 and y ∈ h∗2. Then every geodesic

between x and y meets the bridge b(ĥ1, ĥ2).

The following lemma explains the relationship between über-separated

pairs and über-contractions.
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Lemma 7.3.9 Let h1 ⊂ h2 be an über-separated pair of halfspaces,

and g ∈ G an element that double-skewers h1 and h2. Then g is an

über-contraction.

Proof Let B denote the bridge between h1 and gh1. We will show that

the collection of the g-translates of B forms a system of checkpoints.

Notice that since the bridge is an interval, it is finite even though the

complex is not assumed to be locally finite, hence all the checkpoints

Sn ∶= gnB are finite. Set Λ ∶= ⋃n∈Z Sn. Let Y ∶= h∗1 ∩ gh1 and Yn ∶= gnY

for every n ∈ Z.
For every point x ∈ Yn, we have that its closest-point projections on Λ

are in Sn−1 ∪ Sn ∪ Sn+1: Indeed, since h1 and gh1 are über-separated, it

follows from Lemma 7.3.8 that a geodesic between x and a point x′ ∈ Yn′

with n′ ≥ n + 2 (n′ ≤ n − 2 respectively) meets the bridge Sn+1 (Sn−1

respectively). Moreover, for every x ∈ X that projects on Λ to a point

of Sn, we have that x ∈ Yn−1 ∪ Yn ∪ Yn+1 for the same reasons. Thus, for

x, y ∈ X that project on Λ to points x′ ∈ Sn and y′ ∈ Sm respectively

with m ≥ n + 4, it follows that x and y are separated by the hyperplanes

gn+2ĥ1, . . . , g
m−1ĥ1, hence every geodesic between x and y meets each

checkpoint Sn+2, . . . , Sm−2 by Lemma 7.3.8.

By a result of Haglund [H, Theorem 1.4], g admits a combinatorial

axis Λg. As Λ and Λg stay at bounded distance from one another, it

follows easily from the discussion of the previous paragraph that Λg is

contained in Λ. Since B is finite, the closest-point projection Λ → Λg

yields a quasi-isometry Λ → R, and it is now straightforward to check

that g is an über-contraction.

Proof of Theorem 7.1.1 Let G be a group acting essentially and non-

elementarily on an irreducible finite-dimensional CAT(0) cube complex

X and assume that there exist two hyperplanes whose stabilisers intersect

along a finite subgroup. By Proposition 7.2.3, it is enough to construct

an element of G satisfying conditions (i) and (ii) of Proposition 7.2.3.

Let ĥ1 and ĥ2 be two hyperplanes whose stabilisers intersect along

a finite subgroup. We start by showing that we can assume that ĥ1

and ĥ2 are disjoint. By the Sector Lemma 7.3.2, we choose two disjoint

hyperplanes ĥ3 and ĥ4 that are contained in opposite sectors determined

by ĥ1 and ĥ2. Up to applying the Strong Separation Lemma 7.3.2, we

can further assume that ĥ3 and ĥ4 are strongly separated. Let H ∶=
Stab(ĥ3) ∩ Stab(ĥ4). Then H stabilises the bridge between ĥ3 and ĥ4,

which is a single interval by Lemma 7.3.7 since ĥ3 and ĥ4 are strongly

separated. As intervals are finite, H virtually fixes a geodesic between ĥ3
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and ĥ4. As ĥ3 and ĥ4 are in opposite sectors determined by ĥ1 and ĥ2,

such a geodesic crosses both ĥ1 and ĥ2. Thus, H is virtually contained

in Stab(ĥ1) ∩ Stab(ĥ2), hence H is finite, which is what we wanted.

Thus, let ĥ1 and ĥ2 be two disjoint hyperplanes whose stabilisers

intersect along a finite subgroup. By Lemma 7.3.5, we choose an element

g of G that double-skewers ĥ1 and ĥ2, and such that ĥ1 and gĥ1 are

über-separated. Then according to Lemma 7.3.9 the element g is an

über-contraction, proving (i). Let x be a point of the bridge between

ĥ1 and ĥ2, and choose a geodesic γ between x and g2x. We have that γ

crosses gĥ1 and gĥ2. Since intervals in a finite dimensional CAT(0) cube

complex are finite, a subgroup fixing both x and g2x virtually fixes γ

pointwise. It follows that Stab(x) ∩ Stab(g2x) is virtually contained in a

conjugate of Stab(ĥ1) ∩ Stab(ĥ2), which is finite. This proves (ii), and
Proposition 7.2.3 implies that G is either virtually cyclic or acylindrically

hyperbolic. The action being non-elementary, the virtually cyclic case is

automatically ruled out, which concludes the proof.

Proof of Corollaries 7.1.3 and 7.1.4 Since Corollary 7.1.4 is a direct

consequence of Corollary 7.1.3, let us assume that the group G acts essen-

tially, non-elementarily, and non-uniformly weakly acylindrically (with

a constant L as in the statement) on the irreducible finite-dimensional

CAT(0) cube complex X. By the Strong Separation Lemma 7.3.2, choose

two disjoint hyperplanes ĥ1 and ĥ2. This implies that the combinato-

rial bridge between ĥ1 and ĥ2 is not reduced to a point. Moreover, the

subgroup Stab(ĥ1) ∩ Stab(ĥ2) is virtually contained in the pointwise

stabiliser of the finite bridge between ĥ1 and ĥ2 by Lemma 7.3.7.

By the Double-Skewering Lemma 7.3.2, choose a group element g

that skewers both ĥ1 and ĥ2. For n large enough, ĥ1 and gnĥ1 are

über-separated, and the distance between ĥ1 and gnĥ1 becomes greater

than L by Lemma 7.3.7. In particular, Stab(ĥ1) ∩ Stab(gnĥ1) virtually

fixes a path of length L, hence Stab(ĥ1) ∩ Stab(gnĥ1) is finite by weak

acylindricity. Corollary 7.1.3 now follows from Theorem 7.1.1.

Theorem 7.1.1 allows for a very simple geometric proof of the acylin-

drical hyperbolicity of certain groups:

Example 7.3.10 The Higman group on n ≥ 4 generators, defined by

the following presentation:

Hn ∶= ⟨ai, i ∈ Z/nZ ∣ aiai+1a−1i = a2i+1, i ∈ Z/nZ⟩,

was proved to be acylindrically hyperbolic by Minasyan–Osin [MO], by
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means of its action on the Bass–Serre tree associated to some split-

ting. The Higman graph also acts cocompactly, essentially, and non-

elementarily on a CAT(0) square complex associated to its standard

presentation. That CAT(0) square complex is irreducible, as links of

vertices are easily shown not to be complete bipartite graphs (see [M3,

Corollary 4.6]). Since square stabilisers are trivial by construction, the

stabilisers of two crossing hyperplanes intersect along a finite (actually,

trivial) subgroup. Thus Theorem 7.1.1 applies.

7.4 Proof of Theorem 7.1.5

Definition 7.4.1 Let X be a CAT(0) cube complex and C,C ′ two

cubes of X. We say that C and C ′ separate a pair of hyperplanes if there

exist two hyperplanes ĥ, ĥ′ of X such that each hyperplane defined by

an edge of C ∪C ′ separates ĥ and ĥ′.

Theorem 7.1.5 will be a consequence of the following more general

result:

Theorem 7.4.2 Let G be a group acting on a finite dimensional irre-

ducible CAT(0) cube complex essentially and non-elementarily. Assume

that there exist two maximal cubes C, C ′ of X whose stabilisers inter-

sect along a finite subgroup, and such that C and C ′ separate a pair of

hyperplanes. Then G is acylindrically hyperbolic.

Proof Let HC,C′ be the set of hyperplanes defined by the edges of C∪C ′.
Since C and C ′ are maximal cubes, we have that ⋂k̂∈HC,C′

Stab(k̂) is

contained in Stab(C) ∩ Stab(C ′), and it follows that ⋂k̂∈HC,C′
Stab(k̂)

is finite.

By assumption, choose two disjoint halfspaces h,h′ separated by each

hyperplane of HC,C′ . Up to applying the Strong Separation Lemma 7.3.2,

we can further assume that h and h′ are strongly separated. In particular,

since the bridge between h and h′ is finite by Lemma 7.3.7, it follows that

Stab(ĥ) ∩ Stab(ĥ′) is virtually contained in the pointwise stabiliser of a

geodesic between the two gates of the bridge b(ĥ, ĥ′). As such a geodesic

crosses each hyperplane of HC,C′ by construction of h,h′, it follows that

Stab(ĥ) ∩ Stab(ĥ′) is virtually contained in ⋂k̂∈HC,C′
Stab(k̂), which is

finite by the above argument. Thus Stab(h) ∩ Stab(h′) is finite, and we

conclude with Theorem 7.1.1.
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The following proposition gives a class of examples of CAT(0) cube

complexes where each pair of cubes separates a pair of hyperplanes:

Proposition 7.4.3 Let X be an irreducible CAT(0) cube complex

without free face and such that Aut(X) acts cocompactly on X. Then

each pair of cubes separates a pair of hyperplanes.

Remark 7.4.4 The following example, due to Talia Fernós, shows

that the no-free-face assumption is necessary in Proposition 7.4.3. Take

a 3-dimensional cube [0,1]3 and glue an edge to each of the vertices

(1,0,0), (0,1,0), (0,0,1) and (1,1,1) to get a spiked cube. Then glue

infinitely many of these spiked cubes in a tree-like way, to obtain a cocom-

pact CAT(0) cube complex X which is quasi-isometric to a tree. Then

none of the 3-cubes of that complex is separating a pair of hyperplanes.

Indeed, each 3-cube has three hyperplanes defining it, hence it defines

eight sectors, out of which four contain hyperplanes and four are reduced

to a single point, but among the sectors containing hyperplanes, no two

are opposite.

Before proving Proposition 7.4.3, we start by a simple observation:

Lemma 7.4.5 A CAT(0) cube complex with no free face is geodesically

complete, that is, every finite geodesic can be extended to a bi-infinite

geodesic.

Proof Let γ be a finite geodesic defined by a sequence e1, . . . , en of edges

of X and let v be the terminal vertex of that finite geodesic. We will

show that we can extend it by one edge. Let E denote the set of edges

of X, containing v and such that γ followed by e ∈ E is not a geodesic.

Then every e ∈ E has to be parallel to one of the edges ei defining γ,

that is, every e ∈ E defines a hyperplane ĥe crossed by γ. Moreover,

the map e↦ ĥe is injective as two adjacent edges cannot belong to the

same hyperplane, and any two ĥe, ĥe′ intersect. Indeed, for an edge e

to belong to E means that γ has been travelling on the carrier of the

hyperplane defined by some ei after having crossed ei, and that can be

done simultaneously for several hyperplanes only when they cross each

other. Hence E defines a cube in X, and since there are no free faces

there is an edge e containing v and that does not belong to E, allowing

us to extend by one edge the geodesic γ.

We will also need the following strengthening of the Sector Lemma:

Lemma 7.4.6 (Strong Sector Lemma) Let X be a CAT(0) cube complex
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with no free face, and assume that the automorphism group of X acts

cocompactly on X. Then each sector determined by a finite family of

pairwise crossing hyperplanes contains a hyperplane.

Proof We prove the result by induction on the number n ≥ 2 of pairwise

crossing hyperplanes. For n = 2, the result follows from [S, Proposition

3.3], since a CAT(0) cube complex with no free face is geodesically

complete by Lemma 7.4.5. Let ĥ1, . . . , ĥn be a family of pairwise crossing

hyperplanes, and let hi be a halfspace associated to ĥi for every i. We

want to construct a hyperplane contained in ⋂i hi.

By Helly’s theorem, the family (ĥi ∩ ĥ1)i≠1 defines a family of pairwise

crossing hyperplanes of ĥ1. Note that ĥ1 also satisfies the property of

having no free face, and the action of Stab(ĥ1) on ĥ1 is cocompact, as

the same holds for the action of Aut(X) on X. Thus, one can apply

the induction hypothesis to find a hyperplane ĥ′ of ĥ1 contained in the

sector ⋂i≠1(ĥ1 ∩ hi). This defines a hyperplane of X, which we denote

ĥ. Since ĥ′ is disjoint from the ĥ1 ∩ ĥi for i ≠ 1, it follows from Helly’s

theorem that ĥ is disjoint from the ĥi for i ≠ 1. Let h be the halfspace

of ĥ contained in ⋂i≠1 hi. Since ĥ and ĥ1 cross, we can choose by the

induction hypothesis a hyperplane contained in the sector h ∩ h1, hence

in ⋂i hi.

Proof of Proposition 7.4.3 It is enough to prove the proposition when

C and C ′ are maximal. Choose x and x′ vertices of C, C ′ respectively

that maximize the distance between vertices of C and C ′. Let HC , HC′

be the family of hyperplanes defined by an edge of C, C ′ respectively. By

the Strong Sector Lemma 7.4.6, each sector determined by HC or HC′

contains a hyperplane. Thus, choose a hyperplane ĥ (ĥ′ respectively) in

the unique sector determined by HC (HC′ respectively) that contains x

(x′ respectively). By construction of x and x′, we have that x and x′ are

in opposite sectors defined by HC , and in opposite sectors determined by

HC′ . In particular, every hyperplane of HC,C′ separates x and x′, hence

separates ĥ and ĥ′.

Proof of Theorem 7.1.5 Theorem 7.1.5 is a direct consequence of Theo-

rem 7.4.2 and Proposition 7.4.3.

Theorem 7.1.5 allows for a very simple geometric proof of the acylin-

drical hyperbolicity of certain groups:

Example 7.4.7 The group of tame automorphisms of an affine quadric

threefold, a subgroup of the 3-dimensional Cremona group Bir(P3(C)),
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acts cocompactly, essentially and non-elementarily on a hyperbolic CAT(0)

cube complex without free face [BFL]. The second author showed that

there exist two cubes whose stabilisers intersect along a finite subgroup

[M2, Proof of Theorem 3.1], hence Theorem 7.1.5 applies.

7.5 Artin groups of type FC

We now give an application of our results to the class of Artin groups

of FC type, studied by Charney and Davis in [CD] and which we now

describe. Recall that a Coxeter graph is a finite, simplicial graph Γ with

vertex set S and edges labelled by integers greater than or equal to 2.

The label of the edge connecting two vertices s and t is denoted m(s, t),
and we set m(s, t) = ∞ if s and t are not connected by an edge. The

Artin group associated to a Coxeter graph Γ is the group given by the

presentation:

A = ⟨S ∣ { sts . . .
EGGGGGJGGGGK
m(s,t)

= tst . . .
EGGGGJGGGK
m(s,t)

∶ s, t connected by an edge labelled m(s, t)}⟩ .

Adding the extra relations s2 = 1 for all s ∈ S, we obtain a Coxeter

group W as a quotient of A. We say that A is finite type if the associated

Coxeter group W is finite. It was shown in [vdL] that if T ⊆ S, the

subgroup AT generated by T is isomorphic to the Artin group associated

to the full subgraph of Γ spanned by T . Such subgroups are called special

subgroups of A. Following Charney–Davis, we say that an Artin group is

of FC type if every complete subgraph of the Coxeter graph Γ generates

a special subgroup of finite type.

Given an Artin group A, the Deligne complex DA is the cubical complex

defined as follows: vertices of DA correspond to cosets aAT , where a ∈ A
and T ⊆ S. Note that we allow T = ∅, in which case aAT = {a}. The
1-skeleton D1

A of DA is obtained by putting an edge between cosets of the

form aAT and aAT ′ when T ′ = T ∪ {t′} for some t′ ∈ S ∖ T . In particular,

each edge of DA is labelled by an element of S. Finally, DA is obtained

by “filling the cubes”, that is, by gluing a k-cube whenever D1
A contains

a subgraph isomorphic to the 1-skeleton of a k-cube.

In [CD] Theorem 4.3.5 Charney and Davis show that the Deligne

complex DA of an Artin group A is a CAT(0) cube complex if and only

if A is of FC type. Edges and hyperplanes in this CAT(0) cube complex

are labelled by elements of S. Moreover, each hyperplane is a translate of
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a hyperplane ĥs for some s ∈ S, where ĥs denotes the hyperplane defined

by the edge between {1} and A{s}. It is straightforward to check that

the stabiliser of ĥs is the special subgroup Alk(s) of A determined by the

link of the vertex s in Γ.

The dimension of an Artin group is the maximum cardinality of a

subset T ⊆ S such that AT is finite type, and it is equal to the dimension

of DA. In particular, DA is finite dimensional since the graph Γ is finite.

The Artin group A acts by left multiplication on the aforementioned

cosets, and hence acts by isometries on DA. Since Γ is finite, the action is

cocompact. The stabilizer of a vertex aAT of DA is the subgroup aATa
−1.

In particular, the action is not proper if Γ is non-empty.

The action satisfies the following:

Proposition 7.5.1 Let A be an Artin group of type FC associated to a

Coxeter graph Γ of diameter at least 3. Then the Deligne complex DA is

irreducible and the action of A on DA is essential and non-elementary.

The proof will take up most of this section. We can assume that

Γ is connected, for otherwise A is a free product, DA has a structure

of a tree of spaces, and the result follows. We check separately the

irreducibility of the Deligne complex, the essentiality of the action, and

the non-elementarity of the action.

Lemma 7.5.2 The CAT(0) cube complex DA is irreducible.

Proof Consider the vertex {1} of DA, where 1 denotes the identity ele-

ment. The labelling of the edges ofDA yields a surjective map lk({1}) → Γ.

As Γ has diameter at least 3, so does lk({1}), and it follows that lk({1})
is not a join, hence DA is an irreducible CAT(0) cube complex.

Lemma 7.5.3 The action of A on DA is essential.

Proof Since the action is cocompact, it is enough to show that each

hyperplane is essential, that is, no half-space is contained in a neighbour-

hood of the other halfspace. As each hyperplane is a translate of some ĥs,

it is enough to show that this is the case for hyperplanes of the form ĥs,

where s ∈ S. Let s0 be a vertex of Γ. Since Γ is connected and has diameter

at least 3, we can find two distinct vertices s1, s2 of Γ such that s0, s1, s2
defines a geodesic of Γ. Then the hyperplane ĥs1 is in particular stabilized

by A{s0,s2}. Thus, to show that ĥs0 is essential, it is enough to show

that ĥs1 is unbounded and crosses ĥs0 . Let Cs0,s1 , Cs1,s2 be the squares

of DA containing the vertices {1},A{s0},A{s1} and {1},A{s1},A{s2} re-
spectively. Notice that the edge between A{s0} and A{s0,s1} has stabiliser
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A{s0}, and the edge between A{s2} and A{s1,s2} has stabiliser A{s2}. Thus,

the A{s0,s2}-orbit Y of Cs0,s1 ∪Cs1,s2 defines a subcomplex of DA that

is convex for the CAT(0) metric and quasi-isometric to a tree. Moreover,

every point of Y contained in a half-space of ĥs0 projects on the other

half-space to a point of Cs0,s1 ∪Cs1,s2 . In particular, each half-space of

ĥs0 contains points of Y arbitrarily far away from the other half-space,

hence ĥs0 is essential.

Lemma 7.5.4 The action of A on DA is non-elementary.

The proof of this lemma requires some preliminary work. Since Γ has

diameter at least 3, let s0, s1, s2, s3 be a geodesic of Γ.

Lemma 7.5.5 Let g ∶= s0s3. Then g is a hyperbolic element and admits

an axis Λg (for the CAT(0) metric) that is a reunion of geodesic segments

such that two consecutive segments make an angle strictly greater than π

(for the angular distance on the link).

Proof For i = 0 or 3, we denote by ei the edge between the vertices {1}
and A{si} of DA. Let Y ∶= s−10 e0 ∪ e0 ∪ e3 ∪ s3e3. Then Λg ∶= ⋃n∈Z gnY

is a CAT(0) geodesic, and an axis for g. Indeed, we have the following

properties of angles between consecutive edges:

● The angle (for the angular distance on the link) between e0 and e3 is

3π/2 > π by construction of s0, s1, s2, s3.

● The angle between e0 and s−10 e0 (between e3 and s3e3 respectively)

is π: indeed, the angle is at most π by construction, and if the angle

were π/2, then since DA is a CAT(0) cube complex, ei and siei would

be two adjacent edges of a 3-cube with label ei, which is impossible by

construction of DA.

Thus Λg is a local geodesic, hence a global geodesic. Moreover, Λg is

clearly invariant under the action of ⟨g⟩, and the angle made by Λg at

every ⟨g⟩-translate of the vertex {1} ∈ DA is 3π/2.

To show that g is a rank-one element, we need the following modified

version of the Flat Strip Theorem:

Lemma 7.5.6 (Flat “Half-strip” Theorem) Let Y be a CAT(0) space,

let Λ be a geodesic line, and let h be an isometry of Y preserving Λ.

Let y ∈ ∂Y ∖ ∂Λ and let γ be a geodesic ray from a point x of Λ to y

that meets Λ in exactly one point. If γ and hγ are asymptotic, then the

convex hull of γ∪hγ isometrically embeds in R2 with its standard CAT(0)

metric.
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Proof Let us construct a ‘double’ of Y as follows. Let o ∈ Λ be the

midpoint between x and hx. Such a choice allows to define (uniquely) a

reflection ψ of Λ across o which is an isometry of Λ. We then define

Y ′ = (Y ⊔ Y )/ψ,

i.e. the space obtained from two copies of Y by identifying the two copies

of Λ using the reflection ψ. As a convention, we denote these copies

by Y1 and Y2, we use the subscript ⋯i to indicate to which copy of Y

the object belongs, and we identify Y with the subspace Y1 of Y ′. The

space Y ′ is again a CAT(0) space (as it is obtained from two CAT(0)

spaces by identifying two convex subspaces along an isometry). Note that

γ ⊂ Y is a sub-ray of γ1 ∪ (hγ)2 and hγ ⊂ Y is a sub-ray of (hγ)1 ∪ γ2.

Moreover, we have constructed Y ′ so that γ1 ∪ (hγ)2 and (hγ)1 ∪ γ2 are

local geodesics of Y ′, hence global geodesics of Y ′. As these geodesic lines

are asymptotic by construction, it follows that their geodesic hull is a

flat strip by the Flat Strip Theorem [BH, Theorem II.2.13]. In particular,

the geodesic hull of γ ∪ hγ in Y isometrically embeds in R2.

We can now prove:

Lemma 7.5.7 The only points of ∂DA fixed by g are its two limit

points g+∞, g−∞ ∈ ∂Λg.

Proof Let z ∈ ∂DA ∖ {g+∞, g−∞} and let γ′ be a geodesic ray from

Λg to z that meets Λg in exactly one point. If gz = z, then γ′ and

g2γ′ are asymptotic geodesic rays, hence the convex hull H of γ′ ∪ g2γ′

isometrically embeds in R2 by the Flat Half-strip Theorem 7.5.6. But

γ and g2γ′ both meet Λg in exactly one point, and by construction H

contains two geodesic subsegments of Λg which make an angle 3π/2 for

the angular distance on the link. This yields the desired contradiction.

Proof of Lemma 7.5.4 First notice that one could have proved the above

lemma for the element h ∶= s20s3 by applying exactly the same reasoning.

If A were to admit a finite orbit at infinity, then some power of g and

some power of h would fix a common point at infinity. But the axes of g

and h cannot be asymptotic, for otherwise, being already distinct, Λg and

Λh would bound a flat strip of positive width by the Flat Strip Theorem

7.5.6, and the same reasoning as above would yield a contradiction.

Proof of Proposition 7.5.1 This is a direct consequence of Lemmas 7.5.2,

7.5.3, and 7.5.4.
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We are now ready to apply Theorem 7.1.1 to the action of A on DA in

order to complete the proof of Theorem 7.1.2.

Proof of Theorem 7.1.2 It is enough to consider the case where Γ is

connected, for otherwise the group is a free product. According to the

previous lemma, the action of A on its Deligne complex DA is essential

and non-elementary. In order to apply Theorem 7.1.1 to the action of A on

DA, we choose two vertices s, t of S with disjoint links, which is possible

since Γ has diameter at least 3. It follows from the aforementioned result

of [vdL] that Alk(s) ∩Alk(t) = A∅ = {1}. Thus, the hyperplanes ĥs and

ĥt have stabilisers that intersect trivially, hence Theorem 7.1.1 applies

and A is acylindrically hyperbolic.
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